Analysis of the Stress-Strain State of a Layer with a Cylindrical Cavity and Embedded Supports with Bushings

image_print
DOI
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 28, no. 4, 2025 (December)
Pages 34-43
Cited by J. of Mech. Eng., 2025, vol. 28, no. 4, pp. 34-43

 

Author

Mykhailo L. Kosenko, National Aerospace University “Kharkiv Aviation Institute” (17, Vadyma Manka str., Kharkiv, 61070, Ukraine), e-mail: Scs2012kh@gmail.com, ORCID: 0009-0002-2005-2222

 

Abstract

Using cylindrical embedded supports for parts is common in the aerospace and mechanical engineering industries. Simplifications or approximations are used to calculate such connections. A method for calculating a layer on two longitudinally embedded cylindrical supports is proposed in this paper. There are bushings (thick-walled pipes) between the supports and the layer; the layer is weakened by a longitudinal cylindrical cavity. Stresses are set on the lower and upper surfaces of the layer, smooth contact conditions are set on the inner surfaces of the pipes, and stresses are set on the surface of the cavity. To solve the problem, the Lamé equation is used, where the Cartesian coordinate system is used for the layer, and local cylindrical systems are used for the pipes and the cylindrical cavity. The combination of basic solutions in different coordinate systems is performed using the generalized Fourier method. Based on the boundary conditions and conjugation conditions, an infinite system of integro-algebraic equations, which is reduced to linear algebraic equations of the second kind and solved using the reduction method, is obtained. The stress-strain state at each point of elastic connected bodies is also determined from the Lamé equation using the generalized Fourier method to the basis solutions. The accuracy of the results in this case depends on the approximation of the boundary surfaces to each other and on the order of the system of equations. Numerical studies have been carried out for a layer with supports and a cavity located in a straight line under the action of a cantilever load. The analysis of the stress state was obtained in the zones of cylindrical holes of the layer and in the body of the bushings. The maximum stresses exceed the specified ones and occur at the location of the cylindrical cavity. The proposed solution method makes it possible to obtain the results of the stress-strain state of cantilevered elements of aircraft structures, to evaluate the influence of material and geometric parameters on the values of stress distribution in other structures of machines and mechanisms that can be represented as models similar to the one under consideration.

 

Keywords: generalized Fourier method, Lamé equation, layer with cylindrical inclusions, infinite system of integro-algebraic equations, cylindrical cavity.

 

Full text: Download in PDF

 

References

  1. Tekkaya, A. E. & Soyarslan, C. (2014). Finite element method. In: Laperrière, L., Reinhart, G. (eds) CIRP Encyclopedia of Production Engineering. Berlin, Heidelberg: Springer, pp. 508–514. https://doi.org/10.1007/978-3-642-20617-7_16699.
  2. Ansys. (n.d.). Static structural simulation using Ansys Discovery. Ansys Courses. Retrieved February 27, 2025, from https://courses.ansys.com/index.php/courses/structural-simulation.
  3. Revo, S. L., Avramenko, T. H., Melnychenko, M. M., & Ivanenko, K. O. (2021). Fizyko-mekhanichni kharakterystyky nanokompoztsiinyykh materialiv na osnovi ftoroplastu [Physico-mechanical characteristics of nanocomposite materials based on fluoroplastic]. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Seriia fizyko-matematychni naukyBulletin of Taras Shevchenko National University of Kyiv Series Physics & Mathematics, no. 3, pp. 107–110 (in Ukrainian). https://doi.org/10.17721/1812-5409.2021/3.20.
  4. Kondratiev, A. V., Gaidachuk, V. E., & Kharchenko, M. E. (2019). Relationships between the ultimate strengths of polymer composites in static bending, compression, and tension. Mechanics of Composite Materials, vol. 55, iss. 2, pp. 259–266. https://doi.org/10.1007/s11029-019-09808-x.
  5. Guz, A. N., Kubenko, V. D., & Cherevko, M. A. (1978). Difraktsiya uprugikh voln [Elastic wave diffraction]. Kyiv: Naukova dumka, 307 p. (in Russian).
  6. Grinchenko, V. T. & Meleshko, V. V. (1981). Garmonicheskiye kolebaniya i volny v uprugikh telakh [Harmonic vibrations and waves in elastic bodies]. Kyiv: Naukova dumka, 284 p. (in Russian).
  7. Fesenko, A. & Vaysfel’d, N. (2019). The wave field of a layer with a cylindrical cavity. In: Gdoutos, E. (eds) Proceedings of the Second International Conference on Theoretical, Applied and Experimental Mechanics. ICTAEM 2019. Structural Integrity, vol. 8. Cham: Springer, pp. 277–282. https://doi.org/10.1007/978-3-030-21894-2_51.
  8. Fesenko, A. & Vaysfel’d, N. (2021). The dynamical problem for the infinite elastic layer with a cylindrical cavity. Procedia Structural Integrity, vol. 33, pp. 509–527. https://doi.org/10.1016/j.prostr.2021.10.058.
  9. Malits, P. (2021). Torsion of an elastic half-space with a cylindrical cavity by a punch. European Journal of Mechanics – A/Solids, vol. 89, article 104308. https://doi.org/10.1016/j.euromechsol.2021.104308.
  10. Jafari, M., Chaleshtari, M. H. B., Khoramishad, H., & Altenbach H. (2022). Minimization of thermal stress in perforated composite plate using metaheuristic algorithms WOA, SCA and GA. Composite Structures, vol. 304, part 2, article 116403. https://doi.org/10.1016/j.compstruct.2022.116403.
  11. Nikolayev, A. G. & Protsenko, V. S. (2011). Obobshchennyy metod Furye v prostranstvennykh zadachakh teorii uprugosti [Generalized Fourier method in spatial problems of the theory of elasticity]. Kharkiv: National Aerospace University “Kharkiv Aviation Institute”, 344 p. (in Russian).
  12. Nikolaev, A. G. & Tanchik, E. A. (2015). The first boundary-value problem of the elasticity theory for a cylinder with N cylindrical cavities. Numerical Analysis and Applications, vol. 8, pp. 148–158. https://doi.org/10.1134/S1995423915020068.
  13. Nikolaev, A. G. & Tanchik, E. A. (2016). Stresses in an elastic cylinder with cylindrical cavities forming a hexagonal structure. Journal of Applied Mechanics and Technical Physics, vol. 57, pp. 1141–1149. https://doi.org/10.1134/S0021894416060237.
  14. Nikolaev, A. G. & Tanchik, E. A. (2016). Model of the stress state of a unidirectional composite with cylindrical fibers forming a tetragonal structure. Mechanics of Composite Materials, vol. 52, pp. 177–188. https://doi.org/10.1007/s11029-016-9571-6.
  15. Ukrayinets, N., Murahovska, O., & Prokhorova, O. (2021). Solving a one mixed problem in elasticity theory for half-space with a cylindrical cavity by the generalized Fourier method. Eastern-European Journal of Enterprise Technologies, vol. 2, no. 7 (110), pp. 48–57. https://doi.org/10.15587/1729-4061.2021.229428.
  16. Miroshnikov, V., Denysova, T., & Protsenko, V. (2019). Doslidzhennia pershoi osnovnoi zadachi teorii pruzhnosti dlia sharu z tsylindrychnoiu porozhnynoiu [The study of the first main problem of the theory of elasticity for a layer with a cylindrical cavity]. Opir materialiv i teoriia sporudStrength of Materials and Theory of Structures, no. 103, pp. 208–218 (in Ukrainian). https://doi.org/10.32347/2410-2547.2019.103.208-218.
  17. Miroshnikov, V. Yu., Medvedeva, A. V., & Oleshkevich, S. V. (2019). Determination of the stress state of the layer with a cylindrical elastic inclusion. Materials Science Forum, vol. 968, pp. 413–420. https://doi.org/10.4028/www.scientific.net/msf.968.413.
  18. Miroshnikov, V. Yu. (2019). Investigation of the stress state of a composite in the form of a layer and a half space with a longitudinal cylindrical cavity at stresses given on boundary surfaces. Journal of Mechanical EngineeringProblemy Mashynobuduvannia, vol. 22, no. 4, pp. 24–31. https://doi.org/10.15407/pmach2019.04.024.
  19. Miroshnikov, V. Yu., Savin, O. B., Hrebennikov, M. M., & Demenko, V. F. (2023). Analysis of the stress state for a layer with two incut cylindrical supports. Journal of Mechanical EngineeringProblemy Mashynobuduvannia. 2023. Vol. 26. No. 1. P. 15–22. https://doi.org/10.15407/pmach2023.01.015.
  20. Miroshnikov, V. (2023). Rotation of the layer with the cylindrical pipe around the rigid cylinder. In: Altenbach H., et al. Advances in Mechanical and Power Engineering. CAMPE 2021. Lecture Notes in Mechanical Engineering. Cham: Springer, pp. 314–322. https://doi.org/10.1007/978-3-031-18487-1_32.
  21. Kosenko, M. (2024). Rozviazok zadachi teorii pruzhnosti dlia sharu z tsylindrychnymy vrizanymy oporamy u vyhliadi porozhnyny ta truby: zhorstke zakriplennia [Solution of the problem of the theory of elasticity for a layer with cylindrical embedded supports in the form of a cavity and a pipe: rigid fastening]. Modern problems of development of the aerospace industry of Ukraine: engineering, business, law: abstracts of the interdisciplinary scientific and practical conference (November 5, 2024, Kharkiv, Ukraine). Kharkiv: National Aerospace University “Kharkiv Aviation Institute”, pp. 170–174 (in Ukrainian).
  22. Miroshnikov, V. Yu., Savin, O. B., Kosenko, M. L., & Ilin, O. O. (2024). Analiz napruzhenoho stanu sharu z dvoma tsylindrychnymy vrizanymy oporamy ta tsylindrychnymy vtulkamy [Analysis of the stress state of a layer with two cylindrical embedded supports and cylindrical bushings]. Vidkryti informatsiini ta kompiuterni intehrovani tekhnolohiiOpen Information and Computer Integrated Technologies, no. 101, pp. 112–126 (in Ukrainian). https://doi.org/10.32620/oikit.2024.101.08.

 

Received 07 September 2025

Accepted 14 October 2025

Published 30 December 2025