Effective Formalization of Design Processes as a Key Factor in Achieving Optimal Solutions When Creating the Final Stages of Steam Turbines

image_print
DOI https://doi.org/10.15407/pmach2025.01.042
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 28, no. 1, 2025 (March)
Pages 42-54
Cited by J. of Mech. Eng., 2025, vol. 28, no. 1, pp. 42-54

 

Authors

Anatolii O. Tarelin, Anatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine (2/10, Komunalnykiv str., Kharkiv, 61046, Ukraine), e-mail: tarelin@ipmach.kharkov.ua, ORCID: 0000-0001-7160-5726

Iryna Ye. Annopolska, Anatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine (2/10, Komunalnykiv str., Kharkiv, 61046, Ukraine), e-mail: annopolskaja@gmail.com, ORCID: 0000-0002-3755-5873

 

Abstract

Based on the existing experience in designing and constructing of the last stage blades of large (critical) length and the analysis of literary sources, the features of the methodology for formalizing the processes of creating such blades, taking into account their specific features (large radial dimensions, suboptimal relative grid steps =0.25–1.0, high static and dynamic loads), are established. A parametric formalization of the main modeling dependencies of the processes on which the creation of rotor blades is based is given: the thermo-gas-dynamic process, blade design and the technological process of manufacturing. The need to create systems (subsystems) for automated design of blades of large length with the presence of a model of the technological process of blade manufacturing in the system is substantiated. It is based on the conclusions that even small deviations from the design option within the tolerance limits during blade manufacturing affect the thermo-gas-dynamic characteristics of the stage, especially when it comes to throat areas. A formalized probabilistic-statistical mathematical model that allows to describe the technological deviations of the blade surfaces taking into account the processing modes used in finish milling with a reliability satisfactory for practical calculations has been developed. This makes it possible to take into account the influence of manufacturing errors and specific features of machine equipment on the blade strength indicators, its gas-dynamic characteristics, and also on the efficiency of the stage operation at the design stage. A two-level approach to the design process, which allows using a two-dimensional model to conduct a directed search for the best solution in an automated mode, analyzing hundreds of options taking into account a wide range of constraints, is proposed. Subsequently, as a result of the blade design and calculation of technological deviations, the option with the best thermo-gas-dynamic characteristics, strength indicators, vibration reliability, and the one taking into account manufacturing errors is selected. At the next level, it can be adjusted using three-dimensional calculation models without losing the indicators of the main selected characteristics. This approach improves the design quality and reduces the time to obtain the best solution.

 

Keywords: turbine blades of critical length, formalization, formalization parameters, thermo-gas-dynamics, design, manufacturing technology.

 

Full text: Download in PDF

 

References

  1. Bondarenko, H. A. & Baha, V. M. (2022). Osnovy proiektuvannia turbokompresoriv [Fundamentals of turbocompressor design]: A textbook. Sumy: Sumy State University, 203 p. (in Ukrainian).
  2. Avdieieva, O. P., Usatyi, O. P., Palkov, I. A., Palkov, S. A., & Ishchenko, O. I. (2020). Zastosuvannia kompleksnoi metodolohii dlia optymizatsii protochnykh chastyn parovykh turbin [Application of a comprehensive methodology for optimization of flow parts of steam turbines]. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriia: Enerhetychni ta teplotekhnichni protsesy y ustatkuvanniaNTU “KhPI” Bulletin: Power and heat engineering processes and equipment, no. 1 (3), pp. 49–53 (in Ukrainian). https://doi.org/10.20998/2078-774X.2020.01.08.
  3. (2018). ANSYS-Fluent: Fluid Simulation Software. ANSYS: official website. https://www.ansys.com/Products/Fluids/ANSYS-Fluent.
  4. Shubenko-Shubin, L. A., Tarelin, A. A., & Antiptsev, Yu. P. (1980). Optimalnoye proyektirovaniye posledney stupeni moshchnykh parovykh turbin [Optimal design of the last stage of powerful steam turbines]: by Shubenko-Shubin, L. A. (eds.) Kyie: Naukova dumka, 228 p. (in Russian).
  5. Tarelin, A. A., Antiptsev, Yu. P., & Annopolskaya, I. Ye. (2001). Osnovy teorii i metody sozdaniya optimalnoy posledney stupeni parovykh turbin [Fundamentals of the theory and methods for creating the optimal last stage of steam turbines]. Kharkiv: Kontrast, 224 p. (in Russian).
  6. Subotin, V. H., Levchenko, Ye. V., Shvetsov, V. L., Shubenko, O. L., Tarelin, A. O., & Subotovych, V. P. (2009). Stvorennia parovykh turbin novoho pokolinnia potuzhnistiu 325 MVt [Creation of new generation steam turbines with a capacity of 325 MW]. Kharkiv: Folio, 256 p. (in Ukrainian).
  7. Tarelin, A. A., Kashubin, S. P., & Annopolskaya, I. Ye. (1988). Sistema avtomatizirovannogo proyektirovaniya rabochikh lopatok poslednikh stupeney turbiny [Automated design system for turbine last stage working blades]. Problemy mashinostroyeniyaProblems of Mechanical Engineering, iss. 30, pp. 57–61 (in Russian).
  8. Rusanov, A. V., Shvetsov, V. L., Alyokhina, S. V., Pashchenko, N. V., Rusanov, R. A., Ishchenko, M. H., Slaston, L. O., & Sherfedinov, R. B. (2020). The efficiency increase of the steam turbine low pressure cylinder last stage by the blades spatial profiling. Journal of Mechanical Engineering – Problemy mashinobuduvannia, vol. 23, no. 1, pp. 6–14. https://doi.org/10.15407/pmach2020.01.006.
  9. Sherfedinov, R., Ishchenko, M., Slaston, L., & Alyokhina, S. (2023). Working blades development for the last stages of steam turbine low pressure cylinder. Academic Journal of Manufacturing Engineering, vol. 21, iss. 1, pp. 126–131.
  10. Ustenko, S. A. (2010). Optymizatsiia heometrychnykh parametriv profiliu lopatky iz zastosuvanniam henetychnoho alhorytmu [Optimization of geometric parameters of the blade profile using a genetic algorithm]. Visnyk Natsionalnoho universytetu korablebuduvanniaNUS Journal, no. 4 (in Ukrainian).
  11. Rusanov, A. V. (2017). Naukovi problemy stvorennia turbin novoho pokolinnia z pokrashchenymy tekhniko-ekonomichnymy pokaznykamy [Scientific problems of creating new generation turbines with improved technical and economic indicators]. Visnyk NAN UkrainyVisnyk of the National Academy of Sciences of Ukraine, no. 8, pp. 47–52 (in Ukrainian). https://doi.org/10.15407/visn2017.08.047.
  12. Borysenko, V. D., Ustenko, I. V., & Ustenko, A. S. (2019). Modeliuvannia profiliv lopatok osovykh turbomashyn elipsamy Lame [Modeling of axial turbomachine blade profiles using Lamé ellipses]. Vcheni zapysky Tavriiskoho natsionalnoho universytetu imeni V. I. Vernadskoho. Seriia: Tekhnichni naukyScientific notes of Taurida National V. I. Vernadsky University. Series: Technical Sciences, vol. 30 (69), no. 5, part 1, pp. 56-62 (in Ukrainian) https://doi.org/10.32838/2663-5941/2019.5-1/09.
  13. Eret, P. & Hoznedl, M. (2022). Analysis of geometric errors of throat sizes of last stage blades in a mid-size steam turbine. Journal of Machine Engineering, vol. 22, no. 3, pp. 132–147. https://doi.org/10.36897/jme/151118.
  14. Shashko, Yu. A., Kulyk, O. V., & Sanin, A. F. (2019). Vykorystannia adytyvnykh tekhnolohii dlia otrymannia zahotovok dyskiv turbin turbonasosnykh ahrehativ [The use of additive technologies for obtaining blanks of turbine disks of turbopump units]. Systemne proektuvannia ta analiz aerokosmichnoi tekhnikySystem design and analysis of aerospace technique characteristics, vol. 27, no. 2, pp. 169–176 (in Ukrainian). https://doi.org/10.15421/471937.
  15. Masiahin, V. I., Hryhorenko, A. M., Konokh, K. M., & Khakhalkina, O. A. (2021). Vyznachennia faktoriv, yaki znyzhuiut pokaznyky nadiinosti dyskiv HTD ta rozrobka zakhodiv po yikh pidvyshchenniu [Determination of factors that reduce the reliability of gas turbine engines and development of measures to increase them]. Systemy upravlinnia, navihatsii ta zviazkuControl, Navigation and Communication Systems. Academic Journal, vol. 3, no. 65, pp. 50–55 (in Ukrainian). https://doi.org/10.26906/SUNZ.2021.3.050.
  16. Ishchenko, H. I. (2021). Tekhnolohichne zabezpechennia yakosti vyhotovlennia slozhnoprofilnykh poverkhon turbinnykh lopatok z tytanovykh splaviv [Technological quality assurance of manufacturing complex-profile surfaces of turbine blades from titanium alloys]: Diss. … Cand. Sc. (Eng.), National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, 184 p. (in Ukrainian).
  17. Yepifanov, S. V. ()2001. Analiz sovremennykh podkhodov k identifikatsii matematicheskikh modeley GTD [Analysis of modern approaches to identification of mathematical models of gas turbine engines]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya – Aerospace technical and technology, iss. 23, pp. 169–174 (in Russian).
  18. Vorob’ev, Yu. S., Shepel’, A. I., Romanenko, L. G., Bodchenko, V. N., & Sapelkina, Z. V. (1990). Finite-element analysis of the natural vibrations of statically loaded turbomachine blading. Strength of Materials, vol. 22, iss. 7, pp. 1049–1057. https://doi.org/10.1007/BF00767557.
  19. Kasilova, A. G. & Meshcheryakova, R. K. (1985). Spravochnik tekhnologa mashinostroitelya [Handbook of mechanical engineering technologist]. Moscow: Mashinostroyeniye, 496 p. (in Russian).

 

Received 16 January 2025

Accepted 10 February 2025

Published 30 March 2025