Study of the Structure and Properties of Deposited Layers of NiCrBSi Alloy, Modified with Composite Material

image_print
DOI https://doi.org/10.15407/pmach2023.04.067
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 26, no. 4, 2023 (December)
Pages 67-76
Cited by J. of Mech. Eng., 2023, vol. 26, no. 4, pp. 67-76

 

Author

Pavlo A. Sytnykov, National Technical University “Kharkiv Polytechnic Institute” (2, Kyrpychova str., Kharkiv, 61002, Ukraine), e-mail: pavel.welder@ukr.net, ORCID: 0000-0001-6656-0180

 

Abstract

The structure and properties of deposited layers with a self-fluxing PG-10N-01 alloy of the NiCrBSi system, which is modified with composite material obtained by self-propagating high-temperature synthesis, were studied. Powders of titanium, technical carbon, refractory clay, aluminum, iron oxide, and PT-NA-01 thermosetting powder are used as the initial components of the modifying composite material. The powders were mechanically activated in a ball mill, pressed into a cylindrical sample, and then subjected to the process of self-propagating high-temperature synthesis. The deposition of the samples was carried out with a non-fusible graphite electrode with a diameter of 9.5 mm, at a current of 110 A, using an inverter power source SV-290NK. It was established that the structure of the layer deposited with the PG-10N-01 alloy consists of a solid solution based on nickel (γ-Ni) and a eutectic formed on its basis with Ni3B boride. Single inclusions of carbides of chromium Cr3C2 and boron B4C were also detected in the deposited layer. When adding a modifying composite material to the PG-10N-01 alloy, the structure of the deposited layer consists of γ-hard solution and eutectics, strengthened by carbides of titanium TiC and silicon SiC, which increase the microhardness and wear resistance of the layer. The microhardness of the layer deposited with the composite material, which contained 10% of the modifying component, is 660 HV, which exceeds the microhardness of the layer deposited with the PG-10N-01 alloy, which is equal to 510 HV. Based on the results of the research, operational tests of the set of duckfoot blades of the KPP-8 semi-trailer cultivator, aggregated with the New Holland T 6090 tractor, were carried out in the conditions of the Kamianuvatka farm (Novoukrainka district, Kirovohrad region). Based on the tests, it was proved that the relative wear resistance of duckfoot blades made of 65G steel, strengthened on the reverse side according to the “toe-working blade” scheme by depositing a layer of composite material is 1.7 times greater compared to the wear resistance of blades made by standard technology logic.

 

Keywords: self-propagating high-temperature synthesis, charge, composite material, deposition, deposited layer, carbide, structure, hardness, abrasive, wear resistance, machine parts.

 

Full text: Download in PDF

 

References

  1. Mrdak, M. R. (2012). Microstructure and mechanical properties of nickel-chrome-bor-silicon layers produced by the atmospheric plasma spray process. Vojnotehnicki glasnik Military Technical Courier, vol. LX, iss. 1, pp. 183–200. https://doi.org/10.5937/vojtehg1201183M.
  2. Röttger, A., Kuepferle, J., Brust, S., Mohr, A., & Theisen, W. (2015). Abrasion in tunneling and mining. International Conference on Stone and Concrete Machining (ICSCM), vol. 3, pp. 246–261. https://doi.org/10.13154/icscm.3.2015.246-261.
  3. Bergant, Z., Batic, B., Felde, I., Sturm, R., & Sedlacek, M. (2022). Tribological properties of solid solution strengthened laser cladded NiCrBSi/WC-12Co metal matrix composite coatings. Materials, vol. 15, iss. 1, paper 342. https://doi.org/10.3390/ma15010342.
  4. Buytoz, S., Ulutan, M., Islak, S., Kurt, B., & Nuri, Ç. (2013). Microstructural and wear characteristics of high velocity oxygen fuel (HVOF) sprayed NiCrBSi–SiC composite coating on SAE 1030 steel. Arabian Journal for Science and Engineering, vol. 38, iss. 6, pp. 1481–1491. https://doi.org/10.1007/s13369-013-0536-y.
  5. Chen, J., Dong, Y., Wan, L., Yang, Y., Chu, Z., Zhang, J., He, J., & Li, D. (2018). Effect of induction remelting on the microstructure and properties of in situ TiN-reinforced NiCrBSi composite coatings. Surface and Coatings Technology, vol. 340, pp. 159–166. https://doi.org/10.1016/j.surfcoat.2018.02.024.
  6. Storozhenko, M. S. (2013). Mekhanizmy znoshuvannia plazmovykh pokryttiv systemy NiCrBSi-TiB2 v umovakh tertia ta kovzannia bez mastyla [Wear mechanisms of NiCrSiB-TiB2 plasma-sprayed coatings under dry sliding conditions]. Problemy trybolohiiProblems of Tribology, vol. 70, no. 4, pp. 121–128 (in Ukrainian).
  7. Cai, B., Tan, Y., Tan, H., Jing, Q., & Zhang, Z. (2013). Tribological behavior and mechanism of NiCrBSi−Y2O3 composite coatings Transactions of Nonferrous Metals Society of China, vol. 23, iss. 7, pp. 2002−2010. https://doi.org/10.1016/S1003-6326(13)62689-8.
  8. Luzan, S. O. & Sytnykov, P. A. (2022). Retrospektyvnyi analiz formuvannia ta rozvytku samoposhyriuvanoho vysokotemperaturnoho syntezu [Retrospective analysis of the formation and development of self-propagating high-temperature synthesis]. Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila OstrohradskohoTransactions of Kremenchuk Mykhailo Ostrohradskyi National University, iss. 4 (135), pp. 88–96 (in Ukrainian). https://doi.org/10.32782/1995-0519.2022.4.12.
  9. Niyomwas, S. (2009). Synthesis and characterization of silicon-silicon carbide composites from rice husk ash via self-propagating high temperature synthesis. Journal of Metals, Materials and Minerals, vol. 19, no. 2, pp. 21–25.
  10. Liang, Y. H., Wang, H. Y., Yang, Y. F., Zhao, R. Y., & Jiang, Q. C. (2008). Effect of Cu content on the reaction behaviors of self-propagating high-temperature synthesis in Cu–Ti–B4C system. Journal of Alloys and Compounds, vol. 462, iss. 1–2, pp. 113–118. https://doi.org/10.1016/j.jallcom.2007.08.033.
  11. Warner, T. E., Clausen, A. K., & Poulsen, M. G. (2019). Self-propagating high-temperature synthesis of titanium carbide: An educational module using a wooden block reactor. International Journal of Self-Propagating High-Temperature Synthesis, vol. 28, iss. 1, pp. 56–63. https://doi.org/10.3103/S106138621901014X.
  12. Iushchenko, K. A., Borysov, Yu. S., Kuznetsov, V. D., & Korzh, V. M. (2007). Inzheneriia poverkhni [Surface engineering]. Kyiv: Naukova dumka, 553 p. (in Ukrainian).
  13. Sytnykov, P. A. (2023). Plasma coatings based on self-fluxing NiCrBSi alloy with improved wear resistance properties. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 26, no. 3, pp. 54–64. https://doi.org/10.15407/pmach2023.03.054.
  14. Luzan, S. O. & Sytnykov, P. A. (2023). Doslidzhennia vplyvu parametriv mekhanichnoi aktyvatsii shykhty Ti–C–Al–SiO2–Al2O3–Fe2O3–PT-NA-01 na tryvalist syntezu kompozytsiinoho materialu, shcho modyfikuie [Study of the influence of the parameters of mechanical activation of the charge Ti–C–Al–SiO2–Al2O3–Fe2O3–PT-NA-01 on the duration of the synthesis of the modifying composite material]. Visnyk KhNADUBulletin of Kharkiv National Automobile and Highway University, iss. 100, pp. 42–47 (in Ukrainian). https://doi.org/10.30977/BUL.2219-5548.2023.100.0.42.
  15. Luzan, S. O. & Sytnykov, P. A. (2023). Doslidzhennia osoblyvostei initsiiuvannia protsesu samoposhyriuvanoho vysokotemperaturnoho syntezu modyfikuiuchoho kompozytsiinoho material [Study of the peculiarities of initiating the process of self-propagating high-temperature synthesis of a modifying composite material]. Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila OstrohradskohoTransactions of Kremenchuk Mykhailo Ostrohradskyi National University, iss. 2 (139), pp. 102–109 (in Ukrainian). https://doi.org/10.32782/1995-0519.2023.2.13.
  16. Luzan, S. O. & Sytnykov, P. A. (2023). Struktura ta vlastyvosti naplavlenykh shariv kompozytsiinym materialom, yakyi oderzhano z vykorystanniam SVS-protsesu [Structure and properties of deposited coatings of composite material obtained using the shs process]. Visnyk Khmelnytskoho natsionalnoho universytetu. Seriia: Tekhnichni naukyHerald of Khmelnytskyi national university. Series: Technical sciences, vol. 323, iss. 4, pp. 194–201. (in Ukrainian). https://doi.org/10.31891/2307-5732-2023-323-4-194-201.
  17. Student, M. M., Voytovych, A. A., Sirak, Ya. Ya., & Gvozdetskyi, V. M. (2020). Development of new electrode materials, methods of restoration and protection of thin-walled parts of equipment, which are operated under the conditions of abrasive and gas-abrasive wear. The Paton Welding Journal, iss. 10, pp. 31–34. https://doi.org/10.37434/tpwj2020.10.06.
  18. Sytnykov, P. A. & Luzan, S. O. (2023). Dosvid elektroduhovoho naplavlennia zmitsniuiuchykh shariv detalei gruntoobrobnykh mashyn [Experience of electric arc surfacing of reinforcing layers of parts of tillage machines]. Teoretychni ta praktychni doslidzhennia molodykh vchenykhTheoretical and practical research of young: Scientists collection of abstracts of reports of the 17th International Scientific and Practical Conference of Master’s and Postgraduate Students, Kharkiv, NTU “KhPI”, November 28-30, 2023. Kharkiv: NTU “KhPI”, pp. 469 (in Ukrainian).

 

Received 27 November 2023

Published 30 December 2023