HEAT AND MASS TRANSFER IN THE HEATED FROM BELOW FREE CYLINDRICAL ELEMENTARY CONVECTION CELL WITH A CONICAL CAVITY BOTTOM

image_print

J. of Mech. Eng., 2016, vol. 19, no. 2, pp. 19-24

DOI: https://doi.org/10.15407/pmach2016.02.019

Journal Journal of Mechanical Engineering 
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 19, no. 2, 2016 (June)
Pages 19–24

 

Authors

L. S. Bozbey, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), National Science Center Kharkov Institute of Physics and Technology (1, Akademicheskaya St., Kharkov, 61108, Ukraine), e-mail: bozbiei@kipt.kharkov.ua

A. O. Kostikov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), V. N. Karazin Kharkiv National University (4, Svobody Sq., Kharkiv, 61022, Ukraine), e-mail: kostikov@ipmach.kharkov.ua, ORCID: 0000-0001-6076-1942

V. I. Tkachenko, National Science Center Kharkov Institute of Physics and Technology (1, Akademicheskaya St., Kharkov, 61108, Ukraine),  V. N. Karazin Kharkiv National University (4, Svobody Sq., Kharkiv, 61022, Ukraine), ORCID: 0000-0002-1108-5842

 

Abstract

This paper considers the problem of thermal convection of a viscous incompressible fluid in a cylindrical elementary convection cell with a conical cavity bottom and free boundary conditions. The Stokes functions are constructed in a cylindrical free convection cell with flat boundaries, as well as in the conical cavity bottom of the cell. Based on the Fujiwara effect, the model distributions of Stokes current lines and disturbed temperature in a cylindrical elementary convection cell with a conical cavity bottom and free boundary conditions are obtained.

 

Keywords: elementary convection cell, free boundaries, convective processes, heat transfer, temperature gradient

 

References

  1. Strutt, J. W. (Lord Rayleigh). (1916). On convection currents in a horizontal layer of fluid when the higher temperature is on the under side.  Phil. Mag., vol. 32, pp. 529–546. https://doi.org/10.1080/14786441608635602
  2. Gershuni, G. Z. & Zhuxovickij, E. M. (1972). Convective stability of incompressible fluid. Moscow: Nauka, 393 p. (in Russian).
  3. Getling, A. V. (1991). Formation of spatial structures of Rayleigh-Benard convection. Advances of physical sciences, vol. 161, iss. 9, pp. 1–80 (in Russian). https://doi.org/10.1070/PU1991v034n09ABEH002470
  4. Zierep, J. (1958). Über rotationssymmetrische Zellularkonvektionsströmungen. Agev. Mah. Mech., vol. 39, no. 7/8, pp. 329–333. https://doi.org/10.1002/zamm.19580380746
  5. Koschmieder, E. L. (1993). Bénard cells and Taylor vortices. Cambridge etc., Cambridge University Press, 337 p. https://doi.org/10.1002/zamm.19940741005
  6. Bozbiei, L. S. (2013). Elementarnaya konvektivnaya yacheyka v sloe nesjumaemoy, vjazkoy judkosti. Konferencija molodich uchenuch i specialistov. Kharkov: Podgorny Institute of Mechanical Engineering Problems of NASU, pp. 29. (in Russian).
  7. Bozbiei, L. S., Kostikov, A. O.,  & Tkachenko, V.  I. (2014). Elementary convective cell in incompressible viscous fluid and its physical properties. International Conference MSS-14 “Mode Conversion, Coherent Structures and Turbulence”, Space Research Institute, Moscow, Russia, pp. 322–327.
  8. Bozbey, L. S., Borts, B. V., Kostikov, A. O., & Tkachenko, V. I. (2014). Formation of elementary convective cell in horizontal layer of viscous incompressible fluid. East-European J. of Phys., vol. 1, no. 4, pp. 49–56.
  9. Bozbey, L. S., Kostikov, A. O., & Tkachenko, V. I. (2015). Destruction of Bernard cells under local irregularities of thermal equilibrium and their forming over the Bernard cells. East-European J. of Phys., vol. 2, no. 2, pp. 24–33.
  10. Vinnikov, S. D. & Proskuryakov, B. V. (1988). Gidrofizika: uchebnik dlya vuzov. Leningrad: Gidrometeoizdat, 248 p. (in Russian).
  11. Landau, L. D. & Livshits, E. M. (1986). Teoreticheskaya fizika in 10 vol. Vol. 6. Gidrodinamika. Moscow: Nauka, 736 p. (in Russian).
  12. Korn, G. A. & Korn, T. M. (1977). Spravochnik po matematike dlya nauchnuch rabotnikov i inginerov. Moscow: Nauka, 832 p. (in Russian).
  13. Fujiwhara, S. (1921). The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quarterly Journal of the Royal Meteorological Society, vol. 47, no. 200, pp. 287–292. https://doi.org/10.1002/qj.49704720010

 

Received 01 April 2016