COMPUTER MODELING PROCESS OF AEROBIC PURIFICATION OF SEWAGE WATER

image_print

J. of Mech. Eng., 2016, vol. 19, no. 2, pp. 31-36

DOI: https://doi.org/10.15407/pmach2016.02.031

Journal Journal of Mechanical Engineering 
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 19, no. 2, 2016 (June)
Pages 31–36

 

Authors

A. P. Safonik, National University of Water and Environmental Engineering (11 Soborna St., Rivne city, 33028, Ukraine), e-mail: safonik@ukr.net,  ORCID: 0000-0002-5020-9051

I. M. Tarhonii, National University of Water and Environmental Engineering (11 Soborna St., Rivne city, 33028, Ukraine), e-mail: tamplier.targoniy.93@ukr.net

 

Abstract

A mathematical model of the process of aerobic sewage water purification is constructed, taking into account the interaction of bacteria, organic and biologically non-oxidizing substances. An algorithm for solving the corresponding model problem has been developed. Based the algorithm, a computer experiment has been conducted using the MatLab application software package. The influence of the main parameters on the effectiveness of biological purification is considered. The effect of oxygen concentration and activated sludge on the quality of the purification process is shown.

 

Keywords: mathematical model, aerobic treatment, reverse effect, asymptotics, sewage water, activated sludge

 

References

  1. Bomba, A. & Safonyk, A. (2013). Mathematical modeling of aerobic wastewater treatment in porous medium. Zeszyty Naukowe WSInf, vol. 12, no. 1, pp. 21–29.
  2. Adetola, V., Lehrer, D., et al. (2011). Adaptive estimation in nonlinearly parameterized nonlinear dynamical systems. American Control Conf. on O’Farrell Street, San Francisco, USA, pp. 31–36. https://doi.org/10.1109/ACC.2011.5991365
  3. Boulkroune, B., Darouach, M., Gille, S., et al. (2009). A nonlinear observer for an activated sludge wastewater treatment process. American Control Conference, USA, pp. 1027–1033. https://doi.org/10.1109/ACC.2009.5160499
  4. Brun, R., Kiihni, M., Gujer, W., et al. (2002). Practical identifiability of ASM2d parameters – systematic selection and tuning of parameter subsets. Water Research, no. 36, pp. 4113–4127. https://doi.org/10.1016/S0043-1354(02)00104-5
  5. Brune, D. (1985). Optimal control of the complete-mix activated sludge process. Environmental Technology, no. 6(11), pp. 467–476. https://doi.org/10.1080/09593338509384365
  6. Dochain, D. & Vanrolleghem, P. (2001). Dynamical modelling and estimation in wastewater treatment processes. London: IWA Publishing, 342 p.
  7. Henze, M., Grady, G. P. L., Gujer, W., et al. (1987). Task group on mathematical modelling for design and operation of biological wastewater treatment processes. Activated sludge model no. 1. Scientific and Technical Report 1, IAWPRC, London, 243 p.
  8. Ilenze, M., Gujer, W., Mino, T., et al. (2000). Task group on mathematical modelling for design and operation of biological wastewater treatment. Activated sludge models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Report 9, IWA Publishing, London, 122 p.
  9. Knightes, G. D. & Peters, G. A. (2000).  Statistical analysis of nonlinear parameter estimation for monod biodegradation kinetics using bivariate data. Biotechnol. Biocng., vol. 69, no. 2, pp. 160–170. https://doi.org/10.1002/(SICI)1097-0290(20000720)69:2<160::AID-BIT5>3.0.CO;2-J
  10. Ghai, Q. (2008). Modeling, estimation and control of biological wastewater treatment plants. Doctoral Theses at NTNU, Porsgrunn, Telemark University College, 187 p.

 

Received 02 April 2016