UNIFIED STRUCTURE OF HIGH-SPEED PRECISION SYSTEMS OF ENERGY AND RESOURCE-SAVING AUTOMATIC CONTROL AND REGULATION

image_print

J. of Mech. Eng., 2016, vol. 19, no. 2, pp. 58-67

DOI: https://doi.org/10.15407/pmach2016.02.058

Journal Journal of Mechanical Engineering 
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 19, no. 2, 2016 (June)
Pages 58–67

 

Authors

G. I. Kanyuk, Ukrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine), e-mail: GraphMogu@yandex.ru

I. A. Babenko, Zmiivska TPP of PJSC “Centrenergo” (2, Balakliyske shosse street, urban-type settlement Slobozhanske, Zmiivsky district, Kharkiv region, 63460, Ukraine), , e-mail: director@zmtes.kh.energy.gov.ua

A. Yu. Mezeria, Ukrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine), e-mail: GraphMogu@yandex.ru

M. L. Kozlova, Ukrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine), e-mail: GraphMogu@yandex.ru

I. V. Suk, Ukrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine), e-mail: GraphMogu@yandex.ru

A. V. Serdyuk, Ukrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine), e-mail: GraphMogu@yandex.ru

 

Abstract

Problems of creating energy-saving technologies are considered. A definition of an electro-hydraulic servo system (EGSS) and its components is given. Based on the analysis of the existing schematic solutions, an algorithm of EGSS work has been developed. A series of research and development works has been carried out to solve the problems of creating highly dynamic and reliable part-turn hydraulic motors. An algorithm for constructing mathematical models for the energy-saving management of technological objects is given.

 

Keywords: mechatronic systems, resource saving, electro-hydraulic servo system, electro-hydraulic drive, automated control system

 

References

  1. Isii, T., Simoyapa, I., Inoue, H., & others. (1988). Mechatronics. Moscow: Mir, 318 p.
  2. Kanyuk, G. I. (1999). Prospects for the use of electronic-hydraulic device in modern energy- and resource-saving energy systems. Kharkov. politehn. un., no. 44, pp. 39–40.
  3. Topcheev, Yu. I. (1989). Atlas for the design of automatic control systems. Moscow: Mashinostroenie, 752 p.
  4. Kanyuk, G. I., Shuvanov, A. N., Bliznichenko, E. N., & Logvinov, M. V. (2002). By the choice of the type of actuator for mechatronic systems. Vestnik nats. tehn. un. «KhPI», no.7, pp. 120–125.
  5. Ivaschenko, N. N. (1978). Automatic control. Theory and elements of systems. Moscow: Mashinostroenie.
  6. Fedorets, V. A. & Strutinskiy V. B. (1981). Analysis of the dynamic properties of the hydraulic drive, controlled hydraulic booster jet of high pressure. Hydraulic and hydro pneumatic automation, iss. 17, pp. 44–48.
  7. Komissarenko, Yu. Ya. (1988). Elastic characteristics of the exciter with gas-hydraulic batteries. Hydraulic and hydro pneumatic automation, iss. 27K, pp. 25–29.
  8. Iskovich-Lototskiy, R. D., Matveev, I. B., & others. (1982). Hydroimpulsive drive. Hydraulic and hydro pneumatic automation, iss. 18, pp. 56–60.
  9. (1992). Hydro and pneumatic and its elements Marketplace. Catalog. Moscow: Mashinostroenie, 232 p.
  10. Chuprakov, Yu. I. (1979). Hydraulic tools and hydro pneumatic. Moscow: Mashinostroenie, 232 p.
  11. Kondakov, L. A., Nikitin, G. A., Prokofev, V. N., & others. (1978). Machine hydraulic. Moscow: Mashinostroenie, 495 p.
  12. Kanyuk, G. I., Shuvanov, A. N., Topchiy, A. G., Bliznichenko, E. N., & others. (1999). Modular test bench elements of car transmissions. Khar. Polytechn. Un., no. 45, pp. 52–54.
  13. Kanyuk, G. I. (1999). Creation of electronic-hydraulic servo systems dynamic simulation booth. Khar. Polytechn. Un., no. 46, pp. 42–46.
  14. Rogachov, A. I. (2008). Power saving modes control non-stationary processes. Abstract Dis. Dr. Sc., Kharkiv, 36 p.
  15. Duel, M. O. (1998). Automated process control systems of thermal power elektrostanschy (development, research, implementation). Abstract Dis. Dr. Sc., Kharkiv, 36 p.
  16. Gorelik, O. Kh. (2007). Improving the automated control of nuclear power i power plants to improve the reliability. Abstract Dis. Dr. Sc., Kharkiv, 36 p.
  17. Ryumshin, M. O. (2007). Synthesis, development and implementation of automated process control systems and steel rolling mills. Abstract Dis. Dr. Sc., Kharkiv, 36 p.
  18. Severin, V. P. (2007). Models i methods optimize quality parameters of automatic control unit nuclear power plant. Abstract Dis. Dr. Sc., Kharkiv, 35 p.
  19. Kanyuk, G. I. (2009). Models and parametric methods of structural synthesis of precision electrohydraulic servo systems automated test benches. Abstract Dis. Dr. Sc., Kharkiv, 35 p.

 

Received 10 April 2016