CONSTRUCTION AND RESEARCH INTO THE OPERATORS OF INTERLINEATION OF THE FUNCTIONS OF TWO VARIABLES ON A SYSTEM OF DISJOINT CURVES WITH THE PRESERVATION OF THE CLASS OF DIFFERENTIABILITY

image_print

J. of Mech. Eng., 2016, vol. 19, no. 3, pp. 60-68

DOI:   https://doi.org/10.15407/pmach2016.03.060

Journal Journal of Mechanical Engineering 
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 19, no. 3, 2016 (September)
Pages 60–68

 

Authors

I. V. SerhiienkoV. M. Glushkov Institute of Cybernetics of the NASU (40, Academician Glushkov Ave., Kyiv, 03187, Ukraine)

O. M. LytvynUkrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine),
e-mail: academ_mail@ukr.net

O. O. LytvynUkrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine),
e-mail: academ_mail@ukr.net

O. V. TkachenkoZaporozhye Machine-Building Design Bureau Progress State Enterprise named after
Academician A. G. Ivchenko (2, Ivanova Str., 69068, Zaporozhye, Ukraine), e-mail: avt2007@outlook.com

O. L. Hrytsai, Zaporozhye Machine-Building Design Bureau Progress State Enterprise named after
Academician A. G. Ivchenko (2, Ivanova Str., 69068, Zaporozhye, Ukraine), e-mail: avt2007@outlook.com

 

Abstract

The interlineation operators of the functions of two variables are constructed and investigated with the preservation of the class of differentiability. To this class belongs the function being approximated, provided that the traces of these operators and the traces of their partial derivatives in one of the variables to a fixed order coincide on a given system of lines with the corresponding traces of the function being approximated.

 

Keywords: class of differentiability, traces of a function, traces of derivatives on a line, Hermitian interlination

 

References

  1. Lytvyn, O. M. (2002). Interlinatsiya funktsiy ta deyaki ii zastosuvannya. Kharkiv: Osnova, 544 p. (in Ukrainian).
  2. Lytvyn, O. M. (1993). Interlinatsiya funktsiy. Kharkiv: Osnova, 235 p. (in Ukrainian).
  3. Sergienko, I. V., Zadiraka V. K., & Lytvyn O. M. (2012). Elementy zagal’noi teorii optymal’nyh algorytmiv i sumizhni pytannya. Kyiv: Nauk. dumka, 404 p. (in Ukrainian).
  4. Lytvyn, O. M., Lytvyn, O. O., Tkachenko, O. V., & Gritsay, O. L. (2014). Ermitova interlinatsiya funktsiy dvoh zminnyh na zadaniy systemi neperetynnyh liniy iz zberezhennyam klasu Cr(R2). Dopovidi NAN Ukrainy, no. 7, pp. 53–59 (in Ukrainian). https://doi.org/10.15407/dopovidi2014.07.053
  5. Nikol’skiy, S. M. (1969). Priblizhenie funktsiy mnogih peremennyh i teoremy vlozheniya. Moscow: Nauka, 480 p. (in Russian).
  6. Besov, O. V., Il’in, V. P., & Nikol’skiy, S. M. (1975). Integral’nye predstavleniya funktsiy i teoremy vlozheniya. Moscow: Nauka. 480 p. (in Russian).
  7. Stein, I. (1973). Singul’arnye integraly i differentsial’nye svoistva funktsiy. Moscow: Mir, 342 p. (in Russian).
  8. Vladimirov, V. S. (1979). Obobschennye funktsii v matematicheskoy fizike. Moscow: Nauka, 318 p. (in Russian).
  9. Hermander, L. (1986). Differentsial’nye operatory s postoyannymi koeffitsientami. Moscow: Mir, 455 p. (in Russian).
  10. Tihonov, A. N. & Samarskiy, A. A. (1966). Uravneniya matematicheskoi fiziki. Moscow: Nauka, 724 p. (in Russian).
  11. Rvachev, V. L. (1982). Teoriya R-funktsiy i nekotorye ee prilozheniya. Kiev: Nauk. dumka, 550 p. (in Russian).
  12. Shilov, G. E. (1965). Matematicheskiy analiz. Vtoroy spets. kurs. Moscow: Nauka, 327 p. (in Russian).
  13. Kvasov, B. I. (2006). Metody izogeometricheskoi approksimatsii splaynami. Moscow: Fizmatlit, 360 p. (in Russian).
  14. (1984). Matematicheskaya entsiklopediya. Moscow: Sov. Entsiklopediya, 1215 p. (in Russian).
  15. Lytvyn, O. M. (1984). Interpolyatsiya funktsiy ta ih normal’nyh pohidnyh na gladkyh liniyah v Rn. Dop. AN URSR, no. 7, pp. 15–19. (in Ukrainian).
  16. Lytvyn, O. M. (1991). Tochnyi rozvyazok zadachi Koshi dlya rivnyannya . Dop.  AN URSR, no. 3, pp. 12–17. (in Ukrainian).
  17. Lytvyn, O. M. (1987). Pobudova funktsiy n zminnyh iz zadanymy normal’nymy pohidnymy na Rm (1 <=m <= n-1) iz zberezhennyam klasu Cr(Rn). Dop.  AN URSR, ser. А, no. 5, pp. 13–17. (in Ukrainian).
  18. Sergienko, I. V., Lytvyn, O. M., Lytvyn, O. O., Tkachenko, O. V., & Gritsay, O. L. (2014). Vidnovlennya funktsiy dvoh zminnyh iz zberezhennyam klasu Cr(R2) za dopomogoyu ih slidiv ta slidiv ih pohidnyh do fiksovanogo poryadku na zadaniy linii. Dopovidi NAN Ukrainy, no. 2, pp. 50–55. (in Ukrainian). https://doi.org/10.15407/dopovidi2014.02.050
  19. Sergienko, I. V., Lytvyn, O. M., Lytvyn, O. O., Tkachenko, O. V., & Gritsay, O. L. (2016). Pobudova ta doslidzhennya operatora nablyzhennya funktsiy dvoh zminnyh iz zberezhennyam klasu dyferentsiyovnosti za slidamy ih pohidnyh do fiksovanogo poryadku na zadaniy linii. [Construction and research into the operator of interlineation of the functions of two variables with the preservation of the class of differentiability using the traces of their derivatives to a fixed order on the line specified]. Journal of Mechanical Engineering, vol. 19, no. 2, pp. 50–57. (in Ukrainian). https://doi.org/10.15407/pmach2016.02.050

 

Received 16 August 2016