J. of Mech. Eng., 2016, vol. 19, no. 4, pp. 25-35

DOI:   https://doi.org/10.15407/pmach2016.04.025

Journal Journal of Mechanical Engineering
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 19, no. 4, 2016 (December)
Pages 25–35



L. S. Bozbey, National Science Center Kharkov Institute of Physics and Technology (1, Akademicheskaya St., Kharkov, 61108, Ukraine), e-mail: bozbiei@kipt.kharkov.ua

A. O. Kostikov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), V. N. Karazin Kharkiv National University (4, Svobody Sq., Kharkiv, 61022, Ukraine), e-mail: kostikov@ipmach.kharkov.ua, ORCID: 0000-0001-6076-1942

N. M. Kurskaya, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine)

V. I. Tkachenko, National Science Center Kharkov Institute of Physics and Technology (1, Akademicheskaya St., Kharkov, 61108, Ukraine),  V. N. Karazin Kharkiv National University (4, Svobody Sq., Kharkiv, 61022, Ukraine), e-mail: tkachenko@kipt.kharkov.ua, ORCID: 0000-0002-1108-5842



The geometrical dimensions and mass transfer rate of an elementary convective cell are experimentally investigated. The results of the study are adequately described by a theoretical model of an elementary convective cell. It is shown that the addition of aluminum powder to oil converts the latter into a suspension, whose boundary conditions on a solid wall due to the slipping on the pure oil film can be regarded as free. Two independent methods for determining the rate of mass transfer in cells of different diameters are described: for large cells, by the probe deflection angle; for small ones, by the optical method.


Keywords: elementary convective cell, free boundaries, convective processes, heat transfer, temperature gradient



  1. Bernard, H. (1900). Les tourbillons cellulaires dans une nappe liquid. Revue générale des Sciences, pures et appliqués, vol. 11, pp. 1261–1271, 1309–1328.
  2. Strutt, J. W. (1916). On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Philosophical Magazine, vol. 32, pp. 529–546. https://doi.org/10.1080/14786441608635602
  3. Chandrasekhar, S. (1970). Hydrodynamic and hydromagnetic stability. Oxford, 657 p.
  4. Gershuni, G. Z., & Zhuhovickij, E. M. (1972). Convective stability of incompressible fluid. Moscow: Nauka, 393 p. (in Russian).
  5. Getting, A. V. (2001). Rayleigh-Benard convection. Structures and dynamics (Advanced series in nonlinear dynamics). World Scientific Publishing Company, 245 p.
  6. Getling, A. V. (1991). Formation of spatial structures of Rayleigh-Benard convection. Advances of physical sciences, vol. 161, iss. 9, pp. 1–80 (in Russian). https://doi.org/10.1070/PU1991v034n09ABEH002470
  7. Rieutord, M. & Rincon, F. (2010). The Sun’s Supergranulation. Living Rev. Sol. Phys., vol. 7, no. 2, pp. 84.https://doi.org/10.12942/lrsp-2010-2
  8. Borts, B. V., Vanzha, A. F., Korotkova, I. M., Sitin, V. I., & Tkachenko, V. I. (2014). Issledovanie vozmozhnosti polucheniya dispersno-uprochnennykh oksidami (DUO) staley metodom vakuumno-dugovogo pereplava [Research opportunities oxide dispersion strengthened (DUO) steel by vacuum arc remelting]. Voprosy atomnoy nauki i tekhniki – Problems of atomic science and technology, vol. 92, no. 4, pp. 117–124.
  9. Bozbei, L. S., Kostikov, A. O., & Tkachenko, V. I. (2016). Elementary convective cell in incompressible viscous fluid and its parameters. Journal of Mechanical Engineering, vol. 19, no. 3, pp. 27–36. https://doi.org/10.15407/pmach2016.03.027
  10. Koschmieder, E. L. & Prahl, S. A. (1990). Surface-tension-driven Benard convection in small containers. Fluid Mech., vol. 215, pp. 571–583. https://doi.org/10.1017/S0022112090002762
  11. Vacuum oils [Electronic resource]. – Mode of access: http://tavot-spb.ru/vakuumnye_masla.
  12. (1967). Tables of zeros of the Bessel functions. Moscow: VTs AN SSSR, 94 p.
  13. Koschmieder, E. L. (1993). Bénard cells and Taylor vortices. Cambridge etc., Cambridge University Press, 337 p. https://doi.org/10.1002/zamm.19940741005
  14. Zierep, J. (1958). Über rotationssymmetrische Zellularkonvektionsströmungen.  Z. Agev. Mah. Mech., Bd. 39, no. 7/8, pp. 329–333. https://doi.org/10.1002/zamm.19580380746
  15. Zierep, J. (1958). Eine rotationssymmetrische Zellularkonvektionsstromung. Beitr. Phys. Atmos., vol. 30, pp. 215–222.
  16. Pavlov, V. N. & Kryzhanovskiy, A. S. (2009). Issledovanie obrazovaniya smazochnykh sloev v zubchatom zatseplenii. Problemy treniya i iznashivaniya [Research Education lubricating layers in gearing. Pro-friction and wear problems]. Kyiv: Tekhnika, pp. 183 – 186.
  17. Betchelor, G. (1973). Vvedenie v dinamiku zhidkosti [Introduction to fluid dynamics]. Moscow, 792 p.
  18. Khodakov, G. S. (2003). Reologiya suspenziy. Teoriya fazovogo techeniya i ee eksperimentalnoe obosnovanie [Rheology of suspensions. The theory of the phase currents and its experimental validation]. Rossiyskiy khimicheskiy zhurnal – Russian chemical journal, vol. XLVII, no. 2, pp. 33–44.
  19. Makarova, M. A., Pyshnogray, I. G., Pyshnogray, G. V., et. al. (2012). Postanovka mezoskopicheskikh granichnykh usloviy dlya skorosti proskal-zyvaniya na granitse [Statement of mesoscopic boundary conditions for the binding of proskal-speed on the border]. Polzunovsky vestnik, no. 3/1, pp. 61–74.


Received 08 September 2016