SELF-SUFFICIENT PV-H2 ALTERNATIVE ENERGY OBJECTS

image_print

J. of Mech. Eng., 2016, vol. 19, no. 4, pp. 62-68

DOI:   https://doi.org/10.15407/pmach2016.04.062

Journal Journal of Mechanical Engineering
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 19, no. 4, 2016 (December)
Pages 62–68

 

Authors

J. Kleperis, Institute of Solid State Physics, University of Latvia (LV-1039, Latvia, Rīga, Krimuldas, 2), ORCID: 0000-0002-1463-902X

V. V. Solovey, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: solovey@ipmach.kharkov.ua, ORCID: 0000-0002-5444-8922

V. V. Fylenko, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: fylenko@gmail.com

M. Vanags, Institute of Solid State Physics, University of Latvia (LV-1039, Latvia, Rīga, Krimuldas, 2)

A. Volkovs, Institute of Solid State Physics, University of Latvia (LV-1039, Latvia, Rīga, Krimuldas, 2)

L. Grinberga, Institute of Solid State Physics, University of Latvia (LV-1039, Latvia, Rīga, Krimuldas, 2), ORCID: 0000-0003-1960-2370

A. Shevchenko, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: shevchenko84@ukr.net

M. Zipunnikov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: zipunnikov_n@ukr.net

 

Abstract

This article describes the development of a universal technology that can be used to provide continuous power for small and medium-sized autonomous objects or their microgrids using alternative energy sources and energy storage systems. It is shown that the technology uses advanced developments of hydrogen electrolysis and fuel cells for efficient storage of excess energy obtained from renewable sources for subsequent use in fuel cells.

 

Keywords: energy storage, metal hydride, electrolyzer, photoelectric converter

 

References

  1. (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0028.
  2. (2016). Consumption of energy resources in Latvia. The Central Statistical Bureau of Latvia (CSB). Viewed 02.03.2016: http://www.csb.gov.lv/en.
  3. (2016). Ukraine: Energy Sector Highlights. The S. Energy Information Administration (EIA). Viewed 02.03.2016: https://www.eia.gov/beta/international/analysis.cfm?iso=UKR.
  4. Romanko, S. (2016). Alternative Energy in Ukraine: Challenges, Prospects and Incentive Mechanisms. Country Report: Ukraine. Viewed 28.02.2016: iucnael.org/en/documents/1248-ukraine-1
  5. Sabihuddin, S., Kiprakis, A., & Mueller, M. (2015). A Numerical and Graphical Review of Energy Storage Technologies. Energies, no. 8, pp. 172–216. https://doi.org/10.3390/en8010172
  6. Luo, X., Wang J., Dooner, M, & Clarke, J. (2015). Virtual Energy Storage System for Smart Grids. Applied Energy, vol. 137, pp. 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081
  7. Decourt, B., Lajoie, B., Debarre, R., & Soupa, O. (2014). The hydrogen-based energy conversion FactBook. Gravenhage: SBC Energy Institute, 280 p.
  8. Millet, P., Grigoriev, S., Gandia, L., et al. (2013). Water electrolysis technologies. Amsterdam: Elsevier, Renewable hydrogen technologies, 283 p. https://doi.org/10.1016/B978-0-444-56352-1.00002-7
  9. Solovey, V. V., Shevchenko, A., Kotenko, A., & Makarov, O. (2013). The Device for Generation High-pressure Hydrogen. Patent of Ukraine 103681 MPK C25B 1/12, C25B 1/03. Made public on November 11, 2013, Bulletin no. 21.
  10. Solovey, V. V., Shevcenko, A. A., Vorobjeva, I. A., Semikin, V. M., & Koversun, C. A. (2008). Povysheniye effektivnosti protsessa generatsii vodoroda v elektrolizerakh s gazopogloshchayushchim elektrodom [Improving the efficiency of the process of hydrogen generation in electrolyzers with gas absorption electrode]. Scientific Journal of Kharkiv National Auto-Road University, no. 43, pp. 69–72. (in Russian).
  11. Bockris, J. & Veziroglu, T. (2007). Estimates of the price of hydrogen as a medium for wind and solar sources. Int. J. of Hydrogen Energy, vol. 32(12), pp. 1605–1610. https://doi.org/10.1016/j.ijhydene.2007.04.037
  12. Shimizu, N. et all (2006). A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply. J. of Applied Electrochemistry, no. 36, pp. 419–423. https://doi.org/10.1007/s10800-005-9090-y
  13. Vanags, M., Kleperis J., & Bajars, G. (2011). Electrolyses model development for metal/electrolyte interface: Testing with microrespiration sensors. Intern. J.  Hydrogen Energy, vol. 36, iss. 2, pp. 124–132. https://doi.org/10.1016/j.ijhydene.2010.07.100
  14. Roger, A. (2015). How Much Battery Storage Does a Solar PV System Need? on http://euanmearns.com/how-much-battery-storage-does-a-solar-pv-system-need/
  15. (2016). Calculation of Solar Insolation. http://pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-solar-insolation
  16. Vanags, M., Kleperis, J., & Bajars, G. (2012). Water Electrolysis with Inductive Voltage Pulses. Chapter 2 in Book: Electrolysis. Riga, InTech, pp. 19–44. https://doi.org/10.5772/52453 .
  17. (2016). Latvian Environment Geological and Meteorological Centre. https://www.meteo.lv/lapas/laika-apstakli/klimatiska-informacija/latvijas-klimats/latvijas-klimats?id=1199&nid=562
  18. Thomas, G. (2000). Overview of Storage Development DOE Hydrogen Program [pdf]. Sandia National Laboratories, 9 May 2000.

 

Received 16 October 2016