PROBABILISTIC ASSESSMENT OF THE DURABILITY OF A TURBINE SHAFT IN THE PRESENCE OF CRACKS

image_print

J. of Mech. Eng., 2017, vol. 20, no. 1, pp. 28-35

DOI:   https://doi.org/10.15407/pmach2017.01.028

Journal Journal of Mechanical Engineering
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 1, 2017 (March)
Pages 28–35

 

Authors

E. A. Strelnikova, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), ORCID: 0000-0003-0707-7214

I. G. Sirota, Public Joint-Stock Company Ukrhydroenergo (07300, Ukraine, Kyiv region, Vyshgorod city)

A. V. Linnik, Public Joint-Stock Company Turboatom (199, Moskovsky Ave., Kharkiv, 61037, Ukraine), e-mail: lynnyk@turboatom.com.ua

L. A. Kalembet, Public Joint-Stock Company Turboatom (199, Moskovsky Ave., Kharkiv, 61037, Ukraine)

V. N. Zarkhina, Public Joint-Stock Company Turboatom (199, Moskovsky Ave., Kharkiv, 61037, Ukraine)

O. L. Zaidenvarg, National Aerospace University “KhAI” (17 Chkalov St.,  Kharkov, 61070, Ukraine)

 

Abstract

This article proposes a method for determining the mathematical expectation of the number of years before the destruction of the shaft of a hydro turbine having a defective area. It is assumed that near the shaft surface, there can be micro-defects that propagate under the action of an applied load. The time (in years) required for microcracks to develop before entering the defective area is determined.

 

Keywords: durability, hydro-turbine shaft, crack, expected value, mathematical expectation

 

References

  1. Dimarogonas, A. D. & Papadopoulos, C. A. (1983). Vibration of Cracked Shafts in Bending. J. Sound Vib., vol. 91, pp. 583–593. https://doi.org/10.1016/0022-460X(83)90834-9
  2. Sinou, J. J. (2009). Experimental Response and Vibrational Characteristics of a Slotted Rotor. Commun. Nonlinear Sci. Numer. Simul., no. 14, pp. 3179–3194. https://doi.org/10.1016/j.cnsns.2008.10.024
  3. Gasch, R. A. (1976). Dynamic Behavior of a Simple Rotor With a Cross-Sectional Crack. Proceedings of IMechE Conference on Vibrations in Rotating Machinery, London, 20 Paper no. C178/76, pp. 123–128.
  4. Grabowski, B. (1980). The Vibrational Behavior of a Turbine Rotor Containing a Transverse Crack. ASME J. Mech. Des., no. 102, pp. 140–146. https://doi.org/10.1115/1.3254704
  5. Bently, D. E. & Muszynska A. (1986). Detection of Rotor Cracks. Proceedings of 15th Turbomachinery Symposium, Corpus Christi, TX, November 10–13, pp. 129–139.
  6. Mayes, I. W. & Davies, W. G. R. (1984). Analysis of the Response of a Multi-Rotor-Bearing System Containing a Transverse Crack in a Rotor.  ASME J. Vib., Acoust., Stress, Reliab. Des., no. 10, pp. 139–145. https://doi.org/10.1115/1.3269142
  7. Darpe, A. K., Gupta, K., & Chawla, A. (2004). Coupled Bending, Longitudinal and Torsional Vibrations of a Cracked Rotor. J. Sound Vib., vol. 269, pp. 33–60. https://doi.org/10.1016/S0022-460X(03)00003-8
  8. Darpe, A. K. (2007). Coupled Vibrations of a Rotor With Slant Crack. J. Sound Vib., vol. 305, pp. 172–193. https://doi.org/10.1016/j.jsv.2007.03.079
  9. Bachschmid, N., Pennacchi, P., & Tanzi, E. (2008). Some Remarks on Breathing Mechanism, on Non-Linear Effects and on Slant and Helicoidal Cracks. Mech. Syst. Signal Process, vol. 22, pp. 879–904. https://doi.org/10.1016/j.ymssp.2007.11.007
  10. Sawicki, J. T., Storozhev, D. L., & Lekki, J. D. (2011). Exploration of NDE Properties of AMB Supported Rotors for Structural Damage Detection. ASME J. Eng. Gas Turbines Power, vol. 133, p. 102501. https://doi.org/10.1115/1.4002908
  11. Kantor, B., Naumenko, V., Strelnikova, H., & Ventsel, E. (1999). The hypersingular integral technique in two-dimentional elasto-plastic analys. WIT Transactions on Modelling and Simulation, vol. 25, pp. 65–74.
  12. Sawicki, J. T., Wu, X., Baaklini, G., & Gyekenyesi, A. L. (2003). Vibration Based Crack Diagnosis in Rotating Shafts During Acceleration Through Resonance. Proceedings of SPIE 5046, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II, 2006, San Diego, CA. https://doi.org/10.1117/12.484297
  13. Sawicki, J. T., Friswell, M. I., Pesch, A. H., & Wroblewski, A. (2008). Condition Monitoring of Rotor Using Active Magnetic Actuator. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin, Germany, June 9–13, ASME Paper no. GT2008-51169. https://doi.org/10.1115/GT2008-51169
  14. Sawicki, J. T., Friswell, M. I., Kulesza, Z., Wroblewski, A., & Lekki, J. D. (2011). Detecting Cracked Rotors Using Auxiliary Harmonic Excitation. J. Sound Vib., vol. 330, pp. 1365–1381. https://doi.org/10.1016/j.jsv.2010.10.006
  15. Arsić, M., Vistać, B., Savić, Z., Odanović, Z., & Mladenović, M. (2011). Turbine Shaft Failure Cause Analysis. Proceedings, The Seventh International Triennial Conference Heavy Machinery – HM 2011, June 29–July 2, VrnjačkaBanja, pp. 49–54.
  16. Panasyuk, V. V., Andreykiv, O. Ye., & Kovchyk, S. E. (1971). Evaluation methods of fracture tougness of structural materials. Kiev: Nauk. Dumka, 278 p. (in Russian).
  17. Andreykiv, O. Ye. & Darchuk, A. I. (1987). Fatigue failure and durability of structures. Kiev: Nauk. Dumka, 404 p. (in Russian).
  18. Kogaev, V. P. (1993). Strength calculation at stresses variable in time. Moscow: Engineering, 364 p. (in Russian).
  19. Lessenden, S. J., Pissot, S. P., Tretheway, M. V., & Naynaed K. P. (2006). Torsion response of cracked steel shaft. Fatique fract. Mater. Struct., vol. 30, pp. 734–747. https://doi.org/10.1111/j.1460-2695.2007.01149.x
  20. Paris, P. & Erdogan, F. (1963). Criteria of fatigue crack propagation. J. Basic Engineering, vol. 85, pp. 528–533. https://doi.org/10.1115/1.3656900
  21. Dimarogonas, A. D. & Popadopoulos, C. A. (1983). Vibration of cracked shafts in bending. Journal of solid and vibrations, vol. 91, no. 4, pp. 583–593. https://doi.org/10.1016/0022-460X(83)90834-9
  22. Miodrag, Arsić, Srđan, Bošnjak, Bojan, Međo, Meri, Burzić, Brane, Vistać, & Zoran, Savić. (2012). Influence of loading regimes and operational environment in fatigue state of components of turbine and hydromechanical equipment at hydropower plants. Internet Edition, International Conference Power Plants 2012 – International Conference on Power aspects of power plants operation.
  23. Pugachev, V. (2002). Basic probability theory and mathematical statistics. Moscow: FIZMATLIT, 496 p. (in Russian).
  24. (1992). TU 302.02.173-93 Billets shafts for hydraulic turbines. Kharkov: PO “Kharkov Turbine plant”, 27 p. (in Russian).
  25. (1970). GOST 1778-70. Metallographic methods for determination of non-metallic inclusions. Moscow: Standards Publishing, 24 p. (in Russian).
  26. (1983). GOST 5639-82. Methods for detection and evaluation of grain size. Moscow: Standards Publishing, 21 p. (in Russian).

 

Received 10 February 2017