THERMAL AND THERMAL STRESS STATE OF THE HIGH-PRESSURE ROTOR OF THE K-325-23.5 TURBINE AT COLD STATE START-UP

image_print

J. of Mech. Eng., 2017, vol. 20, no. 2, pp. 3-11

DOI:   https://doi.org/10.15407/pmach2017.02.003

Journal Journal of Mechanical Engineering 
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 2, 2017 (June)
Pages 3–11

 

Authors

Yu. O. Bakhmutskaya, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: julia.bakhmutska@gmail.com, ORCID: 0000-0002-2334-7432

V. N. Goloshchapov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine)

 

Abstract

A computational study of the thermal and thermally stressed states of the high-pressure cylinder rotor of the PJSC Turboatom 325 MW steam turbine at warm-up and cold state start-up stages was performed. In order to determine the non-stationary thermal state of the rotor, thermal boundary conditions of the 3rd kind were obtained. The process of vapor condensation on the surfaces of the rotor elements and the interbody space was taken into account. A change in the design and conditions of high-pressure rotor heating in the area of the front end seal at the stage of preparation for cold state start-up is proposed. A possibility of reducing the level of thermal stresses arising during turbine start-up is shown.

 

Keywords: steam turbine, high-pressure rotor, boundary conditions, thermal state, thermal stresses

 

References

  1. Sudakov, A. V., Gavrilov, S. N., Georgievskaya, E. V., Levchenko, A. I., & Fedorova, L. V. (2015). Obosnovaniye prodleniya sroka sluzhby parovykh turbin, daleye s otkloneniyami ot trebovaniy normativnoy dokumentatsii. Neftegaz.RU, vol. 2, no. 1, pp. 42–47.
  2. Pusch, D., Voigt, M., Vogeler, K., Dumstorff, P., & Almstedt, H. (2016). Setup, validation and probabilistic robustness estimation of a model for prediction of LCF in steam turbine rotors. ASME Turbo Expo 2016, Seoul, South Korea, 2016, vol. GT2016-57321, pp. V008T26A031.  https://doi.org/10.1115/GT2016-57321
  3. Brilliant, H. M. & Tolpadi, A. K. (2004). Analytical Approach to Steam Turbine Heat Transfer in a Combined Cycle Power Plant. ASME Turbo Expo 2004, Vienna, Austria, 2004, vol. GT2004-53387, pp. 401–409. https://doi.org/10.1115/POWER2004-52002
  4. Chernousenko, O. Yu. (2014). Otsenka ostatochnogo resursa i prodleniye ekspluatatsii parovykh turbin bol’shoy moshchnosti. Kharkov: FOP, 308 p.
  5. Isachenko, V. P. (1977). Teploobmen pri kondensatsii. Moscow, Energiya, 344 p.
  6. Mikheyev, M. A., & Mikheyeva, M. (1977). Osnovy teploperedachi. Moscow: Energiya, 344 p.
  7. Kutateladze, S. S., & Leont’yev, A. (1985). Teplomassoobmen i treniye v turbulentnom pogranichnom sloye. Moscow: Energoatomizdat, 320 p.
  8. Bakhmutska, J. O. & Goloshchapov, V. N. (2017). Changing the Heating Conditions of the Rotor of High Pressure Cylinder in the Region of End Seals in the Cold Start Mode. Bulletin of the NTU “KhPI”: Power and Heat Engineering Processes and Equipment, no. 10 (1232), pp. 38-43.
    https://doi.org/10.20998/2078-774X.2017.10.05
  9. Goloshchapov, V. N. & Bakhmutskaya, J. O. (2016). Characteristics of the Steam Flow in the End Seals of High Pressure Cylinders in the State of Vacuum Augmentation. Bulletin of the NTU “KhPI”: Power and Heat Engineering Processes and Equipment, no. 8 (1180), pp. 122–128. https://doi.org/10.20998/2078-774X.2016.08.17
  10. Alekhina, S. V., Goloshchapov, V. N., & Kostikov, A. O. (2007). Nestatsionarnyy teploobmen na poverkhnosti rotorov turbomashin v labirintovykh uplotneniyakh. Kompressor. i energ. mashinostroyeniye, no. 1 (7), pp. 100–102.
  11. Matsevityi, Yu. M., Barsukov, V. A., Goloshchapov, V. N., & Malyarenko V. A. (1979). Estimation of the heat-transfer conditions in the neighborhood of the stagnation point during impingement of a jet on an obstacle. Journal of Engineering Physics, vol. 37, iss. 2, pp. 899–903. https://doi.org/10.1007/BF00861440
  12. Goloshchapov, V. N., Kotul’skaya, O. V., & Bakhmutskaya, Yu. O. (2015). Metodologicheskiy podkhod k opredeleniyu koeffitsiyentov teplootdachi vo vpadinakh uplotneniy stupenchatogo tipa. Kompressor. i energ. mashinostroyeniye, no. 3 (41), pp. 32–36.
  13. Goloshchapov, V. N. & Bakhmutskaya, Yu. O. (2016). Granichnyye usloviya teploobmena vo vpadinakh uplotneniy stupenchatogo tipa. Kompressor. i energ. mashinostroyeniye, no. 3 (45), pp. 21–24.
  14. Matsevityy, Yu. M., Alekhina, S. V., Goloshchapov, V. N., & Kotulskaya, O. V. (2012). Teploobmen v elementakh konstruktsiy parovykh turbin eploobmen v elementakh konstruktsiy parovykh turbin [Heat transfer in steam turbine components]. Kharkov: A. Podgorny Institute of Mechanical Engineering Problems of NASU, 288 p.
  15. Zysina-Molozhen, L. M., Zysin, L. V., & Polyak, M. P. (1974). Teploobmen v turbomashinakh. Leningrad: Mashinostroyeniye, 336 p.
  16. Kapinos, V. M., Gura, L. A., Rukhlinskiy, V. V., & Navrotskiy, V. V. (1985). Teplootdacha pri kondensatsii para v tsilindricheskoy rastochke. Izv. VUZov. Energetika, no. 1, pp. 83–87.

 

Received 21 February 2017