NUMERICAL ANALYSIS OF THE AEROELASTIC BEHAVIOR OF AN AIRCRAFT ENGINE FAN BLADE ROW

image_print

J. of Mech. Eng., 2017, vol. 20, no. 3, pp. 3-11

DOI:   https://doi.org/10.15407/pmach2017.03.003

Journal Journal of Mechanical Engineering
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 3, 2017 (September)
Pages 3–11

 

Authors

V. I. Gnesin, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: gnesin@ukr.net, ORCID: 0000-0001-6411-6158

L. V. Kolodyazhnaya, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), ORCID: 0000-0001-5469-4325

I. F. Kravchenko, Zaporozhye Machine-Building Design Bureau Progress State Enterprise named after Academician A. G. Ivchenko (2, Ivanova St., 69068, Zaporozhye, Ukraine), e-mail: velichkota@)ivchenko-progress.com

V. M. Merkulov, Zaporozhye Machine-Building Design Bureau Progress State Enterprise named after Academician A. G. Ivchenko (2, Ivanova St., 69068, Zaporozhye, Ukraine)

A. V. Sheremetyev, Zaporozhye Machine-Building Design Bureau Progress State Enterprise named after Academician A. G. Ivchenko (2, Ivanova St., 69068, Zaporozhye, Ukraine)

A. V. Petrov, Zaporozhye Machine-Building Design Bureau Progress State Enterprise named after Academician A. G. Ivchenko (2, Ivanova St., 69068, Zaporozhye, Ukraine)

 

Abstract

A numerical analysis of the aeroelastic behavior of a vibrating blade row of an aircraft engine fan is presented. The numerical method is based on solving a related problem of unsteady aerodynamics and elastic oscillations of blades, the equations of which are integrated in parallel and sequentially with the exchange of information at each iteration. The results of calculations of the aeroelastic characteristics and aeroelastic coefficients of the fan blade row are given for harmonic and related oscillations of the blades for given modes of boundary conditions at the row inlet and outlet. A numerical analysis of the effect of the frequency of the 1st eigen form on the mode of oscillation of the blades was carried out, taking into account the interaction of five eigen forms. It is shown that an increase in the frequency of the 1st eigen form leads to an increase in the aerodynamic stability of the oscillations of the blades.

 

Keywords: fan, three-dimensional ideal flow, numerical simulation, unsteady loads, aeroelastic characteristics

 

References

  1. Bolcs, A. & Fransson, T. (1986). Aeroelasticity in turbomachines: Comparison of theoretical and experimental cascade results. Communication de Laboratoire de Thermique Appliquée de Turbomachines, 174 p.
  2. Cinnella, P., De Palma, P., Pascazio, G., & Napolitano, M. (2004). A numerical method for turbomachinery aeroelasticity. Journal of Turbomachinery, vol. 126, iss. 2, pp. 310−316. https://doi.org/10.1115/1.1738122
  3. Gnesin, V.  & Kolodyazhnaya, L. V. (1998). Aerouprugiy analys lopatochnogo ventsa turbomachinery na osnove chislennogo resheniya svyasannoy zadachi aerodynamic i uprugich kolebaniy. Journal of Mechanical Engineering, vol. 1, no. 3-4, pp. 29–40.
  4. Gnesin, V.  & Kolodyazhnaya, L. V. (1999). Chislennoe modelirovanie aerouprugogo povedeniya koleblyushegosya lopatochnogo venza turbomashiny v trechmernom transzvukovom potoke idealnogo gaza. Journal of Mechanical Engineering, vol. 1, no. 2, pp. 65–76.
  5. Gnesin, V. , Kolodyazhnaya, L. V., & Rzadkowsky, R. (2004). A numerical modeling of stator-rotor interaction in a turbine stage with oscillating blades. Journal of Fluids and Structures, vol. 19, iss. 8, no. 19, pp. 1141−1153. https://doi.org/10.1016/j.jfluidstructs.2004.07.001
  6. Gnesin, V. I. & Kolodyazhnaya, L. V. (2009). Chislenniy analys vliyaniya sootnoscheniya chisel lopatok statora I rotora na nestationarnye nagruzki i regimy kolebaniy lopatok. Visnyk NTU «KhPI». Ser. Enerhetychni ta teplotekhnichni protsesy y ustatkuvannia – NTU “KhPI” Bulletin: Power and heat engineering processes and equipment, no. 3, pp. 23–32.
  7. Godunov, S. K., Zabrodin, A. V., & Ivanov, M. Ya. (1976). Chislennoe reschenie mnogomernych zadach gazovoy dynamic. Moscow: Nauka, 400 p.

 

Received 14 April 2017