ON THE PROBLEM OF THE MATHEMATICAL MODELING OF THE 550 MW HYDROGEN-COOLED TURBOGENERATOR ROTOR THERMAL STATE

image_print
DOI https://doi.org/10.15407/pmach2017.03.019
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 3, 2017 (September)
Pages 19-24
Cited by J. of Mech. Eng., 2017, vol. 20, no. 3, pp. 19-24

 

Author

Ye. A. Ovsyannikova,  SE Plant Electrotyazhmash (299, Moskovsky Ave., Kharkov, 61089, Ukraine), National Aerospace University “KhAI” (17, Chkalov St., Kharkov, 61070, Ukraine), e-mail: olena.ovsyanikova@gmail.com

 

Abstract

A simulation of the thermal state of the rotor nodes of a 550 MW synchronous turbogenerator with direct cooling of the windings with hydrogen is performed. The temperature field of the rotor is investigated using the finite element method in a three-dimensional formulation. Correlations for determining the heat transfer coefficients obtained by different scientists during a series of experiments are given. The correlation that ensures the consistency of the calculated and test temperature distributions in the rotor is chosen.

 

Keywords: turbogenerator, rotor winding, thermal state, finite element method

 

References

  1. Avruh, V. Ju. & Duginov, L. A. (1991). Teplogidravlicheskie processy v turbo- i gidrogeneratorah. Moscow: Energoatomizdat, 208 p.
  2. Izvehov, V. , Serihin, N. A., & Abramov, A. I. (2005). Proektirovanie turbogeneratorov. Moscow: Izd. MEI, 440 p.
  3. Przybysz, Je. (1973). Metoda wyznaczania rozkładu temperatur w uzwojeniu wirnika turbogeneratora. Archiwum elektrotechniki, vol. XXII, pp. 767–777.
  4. Aljamovskij, A. A., Sobachkin, A. A., Odincov, E. V., Haritonovich, A. I., & Ponomarev, N. B. (2008). SolidWorks 2007/2008. Komp’juternoe modelirovanie v inzhenernoj praktike. Petersburg, BHV-Petersburg, 1040 p.
  5. Locke, J. M. & Landrum, D. B. (2005). Uncertainty Analysis of Heat Transfer to Supercritical Hydrogen in Cooling Channels. AIAA 2005-4303. https://doi.org/10.2514/6.2005-4303
  6. Taylor, M. F. (1968). Correlation of Local Heat-Transfer Coefficients for Single-Phase Turbulent Flow of Hydrogen in Tubes with Temperature Ratios to 23. NASA TN D-4332.
  7. Dziedzic, W. M., Jonest, S. C., Gould, D. C., & Petley, D. H. (1993). Analytical Comparison of Convective Heat Transfer Correlations in Supercritical Hydrogen. AIAA Journal of Thermophysics and Heat Transfer, vol. 7, no. 1. https://doi.org/10.2514/3.11571
  8. Gurevich, Je. (1969). Teplovye ispytanija turbogeneratorov bol’shoj moshhnosti. Leningrad: Energiya, 168 p.
  9. Kovarskij, E. M. & Janko, Ju. (1990). Ispytanie jelektricheskih mashin. Moscow: Energoatomizdat, 320 p.
  10. Klempner, G. & Kerszenbaum, (2004). Operation and Maintenance of Large Turbo-generators. New York: Institute of Electrical and Electronics Engineers, 560 p. https://doi.org/10.1002/0471683388

 

Received 27 June 2017

Published 30 September 2017