ON THE PROBLEM OF THE MATHEMATICAL MODELING OF THE 550 MW HYDROGEN-COOLED TURBOGENERATOR ROTOR THERMAL STATE

image_print

J. of Mech. Eng., 2017, vol. 20, no. 3, pp. 19-24

DOI:   https://doi.org/10.15407/pmach2017.03.019

Journal Journal of Mechanical Engineering
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 3, 2017 (September)
Pages 19–24

 

Author

Ye. A. Ovsyannikova,  SE Plant Electrotyazhmash (299, Moskovsky Ave., Kharkov, 61089, Ukraine), National Aerospace University “KhAI” (17, Chkalov St., Kharkov, 61070, Ukraine), e-mail: olena.ovsyanikova@gmail.com

 

Abstract

A simulation of the thermal state of the rotor nodes of a 550 MW synchronous turbogenerator with direct cooling of the windings with hydrogen is performed. The temperature field of the rotor is investigated using the finite element method in a three-dimensional formulation. Correlations for determining the heat transfer coefficients obtained by different scientists during a series of experiments are given. The correlation that ensures the consistency of the calculated and test temperature distributions in the rotor is chosen.

 

Keywords: turbogenerator, rotor winding, thermal state, finite element method

 

References

  1. Avruh, V. Ju. & Duginov, L. A. (1991). Teplogidravlicheskie processy v turbo- i gidrogeneratorah. Moscow: Energoatomizdat, 208 p.
  2. Izvehov, V. , Serihin, N. A., & Abramov, A. I. (2005). Proektirovanie turbogeneratorov. Moscow: Izd. MEI, 440 p.
  3. Przybysz, Je. (1973). Metoda wyznaczania rozkładu temperatur w uzwojeniu wirnika turbogeneratora. Archiwum elektrotechniki, vol. XXII, pp. 767–777.
  4. Aljamovskij, A. A., Sobachkin, A. A., Odincov, E. V., Haritonovich, A. I., & Ponomarev, N. B. (2008). SolidWorks 2007/2008. Komp’juternoe modelirovanie v inzhenernoj praktike. Petersburg, BHV-Petersburg, 1040 p.
  5. Locke, J. M. & Landrum, D. B. (2005). Uncertainty Analysis of Heat Transfer to Supercritical Hydrogen in Cooling Channels. AIAA 2005-4303. https://doi.org/10.2514/6.2005-4303
  6. Taylor, M. F. (1968). Correlation of Local Heat-Transfer Coefficients for Single-Phase Turbulent Flow of Hydrogen in Tubes with Temperature Ratios to 23. NASA TN D-4332.
  7. Dziedzic, W. M., Jonest, S. C., Gould, D. C., & Petley, D. H. (1993). Analytical Comparison of Convective Heat Transfer Correlations in Supercritical Hydrogen. AIAA Journal of Thermophysics and Heat Transfer, vol. 7, no. 1. https://doi.org/10.2514/3.11571
  8. Gurevich, Je. (1969). Teplovye ispytanija turbogeneratorov bol’shoj moshhnosti. Leningrad: Energiya, 168 p.
  9. Kovarskij, E. M. & Janko, Ju. (1990). Ispytanie jelektricheskih mashin. Moscow: Energoatomizdat, 320 p.
  10. Klempner, G. & Kerszenbaum, (2004). Operation and Maintenance of Large Turbo-generators. New York: Institute of Electrical and Electronics Engineers, 560 p. https://doi.org/10.1002/0471683388

 

Received 27 June 2017