DESIGN FORECASTING OF THERMAL STRENGTH AND RESOURCE OF STEAM TURBINE STRUCTURAL COMPONENTS

image_print
DOI https://doi.org/10.15407/pmach2018.03.038
Journal Journal of Mechanical Engineering
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 21, no. 3, 2018 (September)
Pages 38-46
Cited by J. of Mech. Eng., 2018, vol. 21, no. 3, pp. 38-46

 

Authors

Nikolay Shulzhenko, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky str., Kharkiv, 61046, Ukraine), e-mail: shulzh@ipmach.kharkov.ua, ORCID: 0000-0002-1386-0988

Pavel Gontarovskiy, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky str., Kharkiv, 61046, Ukraine), e-mail: gontarovskijpavel@gmail.com

Nataliya Garmash, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky str., Kharkiv, 61046, Ukraine), e-mail: garm.nataly@gmail.com, ORCID: 0000-0002-4890-8152

Irina Melezhik, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky str., Kharkiv, 61046, Ukraine), e-mail: melezhyk81@gmail.com, ORCID: 0000-0002-8968-5581

 

Abstract

Effective and reliable operation of power units is closely connected with the provision of the thermal strength and durability of their elements and components. The needs of the modern energy market lead to the operation of equipment in variable modes, which causes accelerated wear-out of its resource. The problem of extending the resource of power equipment is becoming increasingly important due to the fact that its ageing processes outstrip its replacement rate. Therefore, in order to ensure the reliable operation of power units, a calculated estimate of the thermal stability and durability of their elements is essential, based on the application of new methods and calculation models, taking into account a number of important factors (damageability, material property heterogeneity, contact interactions, presence of cracks, influence of non-stationary temperature fields, etc.) The paper gives an overview of  methodical and software as well as the results of the calculated research of  the thermal strength, resource and crack resistance of steam turbine elements, which have been performed at A. Podgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine during the last 15 years. The calculated estimate of the resource of power unit parts and components, as well as substantiation of the possibility of its extension were performed within the framework of the normative document developed by the authors of this paper for determining the estimated resource and survivability of  rotors and turbine structural units with more reasonable reserve coefficients. The developed methodical ware allowed us to make calculations of steam turbine elements in newly specified formulations, taking into account the peculiarities of real operating conditions. The developed computerized system for diagnosing the thermal-stress state and wear-out of  high-temperature steam turbine rotor resources, taking into account the real operating modes of turbine units, obtained on the basis of the parameters of the automatic control system of technological processes, allows one to more accurately estimate the time of their trouble-free operation. Formulations and a brief analysis of the results of the considered problems of thermal strength and resource of turbine elements are presented.

 

Keywords: design forecasting, thermal strength, resource, crack resistance, steam turbine elements

 

Full text: Download in PDF

 

References

  1. Shulzhenko, N. G., Gontarovskiy, P. P., Zaytsev, B. F. (2011). Zadachi termoprochnosti, vibrodiagnostiki i resursa energoagregatov (modeli, metody, rezul’taty issledovanii): monogr. [Problems of thermal strength, vibrodiagnostics and resource of power units (models, methods, research results): monograph.] Saarbrücken, Germany: LAP LAMBERT Academic Publishing GmbH & Co. KG, 370 p. (in Russian).
  2. Shulzhenko, M. G., Gontarowsky, P. P., & Protasova, T. V. (2004). Primenenie poluanaliticheskogo metoda konechnykh elementov dlya resheniya trekhmernykh zadach termomekhaniki v tsilindricheskikh koordinatakh. [Employing the semi-analytical finite-element method for bodies of rotation thermalsStressed state design]. Vestn. NTU «KhPI». Ser. Dinamika i prochnost mashin – Bulletin of NTU “KhPI”. Series: Dynamics and Strength of Machines, iss. 20, pp. 151–160 9in Russian).
  3. Shulzhenko N. G., Gontarovskiy P. P., & Matyukhin Yu. I. (2007). Otsenka dlitel’noi prochnosti rotorov parovykh turbin na osnove analiza rasseyannykh povrezhdenii [Estimating the long-term strength of steam turbine rotors based on analysing scattered faults] Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 10, no. 4, pp. 71–80 (in Russian).
  4. Shulzhenko, M. G., Gontarovskiy, P. P., Pozhidaev, А. V., & Mamontov N. I. (2006). Raschetnaya otsenka ostatochnogo resursa rotorov i korpusov parovykh turbin [Estimated evaluation of the residual life of rotors and hulls of steam turbines]. Energetika i elektrifikatsiya – Power and Electrification, no. 12, pp. 41–51 (in Russian).
  5. Shulzhenko, M. G., Gontarowsky, P. P., & Melezhyk, I. I. (2004). Otsenka zhivuchesti vysokotemperaturnykh elementov turbomashin s treshchinami [The technique of estimating the life of high-temperature components of turbomachines with cracks]. Vestn. NTU «KhPI». Ser. Dinamika i prochnost mashin – Bulletin of NTU “KhPI”. Series: Dynamics and Strength of Machines, iss. 19, pp. 153–160 (in Russian).
  6. Shulzhenko, M. G., Gontarowsky, P. P., & Melezhyk, I. I. (2005). Raschet treshchinostoikosti elementov konstruktsii metodom konechnykh elementov [Calculation of two-dimensional structure elements Crack resistance using FEM]. Vestn. NTU «KhPI». Ser. Dinamika i prochnost mashin – Bulletin of NTU “KhPI”. Series: Dynamics and Strength of Machines, iss. 21, pp. 127–132 (in Russian).
  7. Shul’zhenko, M. G., Gontarovskyi, P. P., Garmash, N. G., Melezhyk, I. I., & Protasova, T. V. (2010). Thermostressed state and crack growth resistance of rotors of the NPP turbine K-1000-60/1500. Strength of Materials, vol. 42, iss. 1, pp. 114–119. https://doi.org/10.1007/s11223-010-9197-1
  8. Shulzhenko, M., Gontarowsky, P., Garmash, N., & Melezhik, I. (2013). Rozrakhunkove otsiniuvannia rozvytku trishchyny pry tsyklichnomu navantazhenni z vykorystanniam parametriv rozsiianykh poshkodzhen [Computation estimation of the crack development under cyclic loading using dissipated damages parameters]. Visn. Ternop. nats. tekhn. un-tuScientific Journal of the Ternopil National Technical University, no. 3 (71), pp. 197–204 (in Ukrainian).
  9. Podgornyy, A. N., Gontarovskiy, P. P., Kirkach, B. N., Matyukhin, Yu. I., & Khavin, G. L. (1989). Zadachi kontaktnogo vzaimodeistviya elementov konstruktsii [Problems of contact interaction of structural elements]. Kyiv: Nauk. dumka, 232 p. (in Russian).
  10. Garmash, N. G. (1999). Modelirovanie termonapryazhennoi posadki turbinnogo diska na val [Modeling of a thermally stressed landing of a turbine disk on a shaft]. Vestn. NTU «KhPI». Novye resheniya v sovremennykh tekhnologiyakhBulletin of NTU “KhPI”. Series: New Solutions in Modern Technologies, iss. 47, pp. 13–15 (in Russian).
  11. Shulzhenko, N. G., Gontarowsky, P. P., & Matyukhin, Y. I. (2001). Razvitie raschetnykh modelei rotorov turbomashin dlya otsenki ikh termonapryazhennogo i vibratsionnogo sostoyanii [Development of design models of turbomachine rotors for evaluating their thermostressed and vibration states]. Vibratsii v tekhnike i tekhnologiyakhVibration in engineering and technology, no. 4 (20), pp. 66–69 (in Russian).
  12. Shlykov, Yu. P., Ganin, B. A., & Tsarevsky, S. N. (1977). Kontaktnoe termicheskoe soprotivlenie [Contact thermal resistance]. Moscow: Energiya (in Russian).
  13. Garmash, N. G. & Gontarovskiy, V. P. (2001). Napryazhennoe sostoyanie zamkovogo soedineniya lopatok gazovoi turbiny v ramkakh termokontaktnoi zadachi [Tension of connection stiffness of vanes of a combustion turbine in the framework of the thermocontact task]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 4, no. 3-4, pp. 66–69 (in Russian).
  14. Melezhyk, I. I., Gontarovsky, P. P., & Shulzhenko, M. G. (2011). Otsenka vliyaniya vlazhno-parovoi sredy na kinetiku treshchin v sosudakh energooborudovaniya [Estimation of influence of wet-steam environment on cracks kinetics in energy equipment vessels]. Vestn. dvigatelestroeniya – Herald of Aeroenginebuilding, no. 2, pp. 175–178 (in Russian).
  15. Shulzhenko, M., Gontarovsky, P., & Melezhyk, I. (2011). Otsinyuvannya vplyvu ahresyvnoho seredovyshcha na kinetyku trishchyn v elementakh enerhoobladnannya [Estimation of influence of a hostile environment on cracks kinetics in power equipment elements]. Mashynoznavstvo – Mechanical Engineering, no. 3–4 (165–166), pp. 45–49 (in Russian).
  16. Shulzhenko N. G., Gontarovskiy P. P., Garmash N. G., & Melezhik I. I. (2015). Otsenka razvitiya treshchiny pri mnogorezhimnom tsiklicheskom nagruzhenii na osnove analiza rasseyannykh povrezhdenii materiala [Assessment of crack evolution under multi-mode cyclic loading based on material scattered damage analysis]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 18, no. 4/2, pp. 54–58 (in Russian).
  17. Shulzhenko, N. G., Gontarovskiy, P. P., Garmash, N. G., & Melezhyk, I. I. (2017). Otsinka rozvytku trishchyny pry tsyklichnomu navantazhenni plastynchatykh elementiv iz vykorystanniam parametriv rozsiianykh poshkodzhen materialu [Evaluation of the crack development at a cyclic loading of plate elements using the parameters of scattered damages of the material]. Visn. NTU «KHPI»: Enerhetychni ta teplotekhnichni protsesy y ustatkuvannyaBulletin of NTU “KhPI”. Series: Power and Heat Engineering Processes and Equipment, no. 9 (1231), pp. 41–44 (in Ukrainian). https://doi.org/10.20998/2078-774X.2017.09.06
  18. Shulzhenko, N. G., Gontarovskiy, P. P., Garmash, N. G., & Melezhyk, І. І. (2017). Rozrakhunkova otsinka rozvytku trishchyny z kontaktuiuchymy berehamy v ploskykh elementakh konstruktsii [Computation estimation of the crack development with crack edges contact of plane structural elements]. Visn. Zaporiz. nats. un-tu. Fizyko-matematychni naukyBulletin of Zaporizhzhya National University. Physical and Mathematical Sciences, no. 1, pp. 365–373 (in Ukrainian).
  19. Shulzhenko, N., Gontarovskiy, P., Garmash, N., & Melezhyk, I. (2018). Modelirovanie rosta kol’tsevoi treshchiny v tsilindricheskom elemente konstruktsii pri tsiklicheskom nagruzhenii [Simulation of the propagation of circumferential crack in the cylindrical element structure exposed to cyclic loadings]. Visn. NTU «KHPI». Ser. Enerhetychni ta teplotekhnichni protsesy y ustatkuvannya – Bulletin of NTU “KhPI”. Series: Power and Heat Engineering Processes and Equipment, no. 12 (1288), pp. 62–66 (in Russian). https://doi.org/10.20998/2078-774X.2018.12.11
  20. Shulzhenko, M. H., Hontarovskyi, P. P., Matiukhin, Yu. I., Melezhyk, I. I., & Pozhydaiev, O. V. (2011). Vyznachennia rozrakhunkovoho resursu ta otsinka zhyvuchosti rotoriv i korpusnykh detalei turbin [Determination of estimated resource and evaluation of rotor life and body parts of turbines]: Methodological guidelines. Regulatory document SOU-N MEV 0.1–21677681–52:2011: approved by the Ministry of Energy and Coal Mining of Ukraine: effective as of 07.07.11. Kyiv: Ministry of Energy and Coal Mining of Ukraine (in Ukrainian).
  21. Shul’zhenko, N. G, Gontarovskii, P. P., Matyukhin, Yu. I., & Garmash, N. G. (2010). Numerical analysis of the long-term strength of the rotor disks of steam turbines. Strength of Materials, vol. 42, iss. 4, pp. 418–425. https://doi.org/10.1007/s11223-010-9232-2
  22. Shulzhenko, N. G., Pozhidayev, A. V., Glyadya, A. A., & Dedov, V. G. (2004). Raschetnaya otsenka ostatochnogo resursa rotorov vysokogo i srednego davleniya turbin K-300-240 KhTGZ st. № 1–4 Zaporozhskoi TES [Numeical evaluation of the residual life for high-pressure and intermediate-pressure of the turbines K-300-240 KhTGZ at stage no. 1–4 of the Zaporizhia steam power plant]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 7, no. 4, pp. 3–11 (in Russian).
  23. Shulzhenko, M. H., Matiukhin, Yu. I., Garmash, N. H., Pozhydaiev, O. V., & Hontarovskyi V. P. (2011). Metodyka operatyvnoyi otsinky poshkodzhenosti materialu rotora turbiny pry tsyklichnomu navantazhenni i povzuchosti [Methodology of operative estimation of damage a material of the turbine rotor at cyclic loading and creep]. Problemy Mashinostroyeniya Journal of Mechanical Engineering, vol. 14, no. 5, pp. 17–23 (in Ukrainian).
  24. Shulzhenko, N. G., Matyukhin, Yu. I., & Gontarovskiy, V. P. (2002). O dlitelnoi prochnosti vysokotemperaturnoi zony osevogo kanala rotorov parovykh turbin [On the long-term creep strength for steam turbines rotors axial channel high-temperature zone]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 5, no. 1, pp. 9–16 (in Russian).
  25. Shulzhenko, N. G., Gontarovskiy, P. P., & Matyukhin, Yu. I. (2015). Resurs diska parovoi turbiny s nachal’nymi defektami v oblasti razgruzochnykh otverstii pri polzuchesti [Steam turbine disk resource with initial defects of discharge openings area under creep]. Problemy Mashinostroyeniya Journal of Mechanical Engineering, vol. 18, no. 2, pp. 3–10 (in Russian).
  26. Shulzhenko, N. G., Gontarovskiy, P. P., & Protasova, T. V. (2006). Vliyaniye teplovykh kanavok na deformatsiyu tsel’nokovanogo rotora pri mestnykh neosesimmetrichnykh peregrevakh [Influence of thermal grooves on the deformation of a solid forged rotor during local non-axisymmetric overheating]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 9, no. 4, pp. 84–89 (in Russian).
  27. Shul’zhenko, N. G., Gontarovskii, P. P., & Protasovsa, T. V. (2014). Influence of the circumferential non-uniformity in the material mechanical properties on the deformation of the rotors of power-generating units. Strength of materials, vol. 46, iss. 4, pp. 483–492. https://doi.org/10.1007/s11223-014-9573-3
  28. Shulzhenko, N. G., Matyukhin, Yu. I., Gontarovskiy, P. P., & Grishin, N. N. (2004). Otsenka razrushayushchego chisla oborotov rotora turboagregata AES [Estimation of destructive rotational speed of nuclear power plant turbo-set rotor]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 7, no. 1, pp. 55–60 (in Russian).
  29. Melezhyk, I. I., Gontarovsky, P. P., & Shulzhenko, M. G. (2008). Raschetnaya otsenka treshchinostoikosti gribovidnogo zamkovogo soedineniya lopatki s diskom parovoi turbiny [A calculation crack resistance estimation of mushroom type root joint of steam turbine]. Physical and computer technologies: Proceedings 14-th international. scientific-techn. Conf. Kharkiv: Kharkiv, Mashinostroyit. factory “FED”, pp. 478–481 (in Russian).
  30. Getsov, L. B., Shulzhenko, N. G., Gontarovsky, P. P., & Melezhyk, I. I. (2009). Otsenka treshchinostoikosti mnogoopornykh zamkovykh soedinenii lopatok gazoturbinnoi ustanovki GTK-10-4 [Evaluation of the crack resistance of multi-pivot lock joints in the blades of a GTK-10-4 gas turbine unit]. Strength of materials and life of elements of power equipment. Proc. NPO CKTI, St. Petersburg, iss. 296, pp. 355 – 363 (in Russian).
  31. Shulzhenko, N. G., Gontarovskiy, P. P., Matyukhin, Yu. I., & Garmash, N. G. (2008). Analiz formoizmeneniya vysokotemperaturnoi chasti korpusa turbiny posle dlitel’noi ekspluatatsii [Analysis of forming of the high-temperature part of the turbine case after long-term operation]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 11, no. 3, pp. 15–23 (in Russian).
  32. Zaytsev, B. F., Shulzhenko, N. G., & Asaenok, A. V. (2006). Napryazhenno-deformirovannoe sostoyanie i kontaktnye yavleniya v opiranii diafragmy parovoi turbiny [Stress-strained state and contact phenomena in the bearing of a steam turbine diaphragm]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 9, no. 3, pp. 35–45 (in Russian).
  33. Shul’zhenko, N. G., Zaitsev, B. F., Asaenok, A. V., & Protasova, T. V. (2017). Deformation and vibration-induced stress intensity of a high-temperature turbine rotor with a breathing transverse crack. Strength of Materials, vol. 49, iss. 6, pp. 751–759. https://doi.org/10.1007/s11223-018-9920-x
  34. Shulzhenko, M. H., Hontarovskyi, P. P., Matiukhin, Yu. I., Garmash, N. H., & Hontarovskyi, V. P. (2013). Systema diahnostyky termonapruzhenoho stanu i spratsyuvannya resursu rotora vysokoho tysku turbiny T-250/300-240 na statsionarnykh ta zminnykh rezhymakh roboty [The system of diagnostic of a thermostressed state and operation of a resource for a rotor of a high pressure of turbine T-250/300-240 on stationary and variable operating modes]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 16, no. 6, pp. 8–14 (in Ukrainian).
  35. Shulzhenko, M. G., Gontarovskiy, P. P., Matiukhin, Yu. I., Garmash, N. G., & Gontarovskiy, V. P. (2014). Avtomatizirovannaya otsenka srabatyvaniya resursa vysokotemperaturnogo rotora turbiny [Computer-aided estimation of the resource-wear of the high-temperature turbine rotor]. Visn. NTU «KHPI». Ser. Enerhetychni ta teplofizychni protsesy y ustatkuvannya – Bulletin of NTU “KhPI”. Series: Power and Heat Engineering Processes and Equipment, no. 13 (1056), pp. 39–45 (in Russian).
  36. Shulzhenko, N. G., Gontarovskiy, P. P., Garmash, N. G., & Efremov, Yu. G. (2015). Diagnostirovanie termonapryazhennogo sostoyaniya i otsenka srabatyvaniya resursa rotorov vysokogo i srednego davleniya turbiny T-250/300-240 [Diagnosing the thermally stressed state and estimating the resource wear out for the rotors of high and low pressure turbine T-250/300-240]. Visn. NTU «KHPI». Ser. Enerhetychni ta teplotekhnichni protsesy y ustatkuvannyaBulletin of NTU “KhPI”‘. Series: Power and Heat Engineering Processes and Equipment, no. 16 (1125), pp. 32–37 (in Russian). https://doi.org/10.20998/2078-774X.2015.16.05
  37. Shulzhenko, N. G., Garmash, N. G., & Gontarowsky, V. P. (2012). Otsenka shchadyashchikh rezhimov ekspluatatsii po termonapryazhennomu sostoyaniyu vysokotemperaturnogo rotora [The estimation of partial load modes exploitation of turbines on the thermostressed state of the high-temperature rotor]. Aviats.-kosm. tekhnika i tekhnologiyaAerospace Technic and Technology, no. 8 (95), pp. 160–164 (in Russian).
  38. Shul’zhenko, N. G, Gontarovskii, P. P., Garmash, N. G., & Grishin, N. N. (2015). Torsional vibrations and damageability of turboset shaftings under extraordinary generator loading. Strength of Materials, vol. 47, iss. 2, pp. 227–234. https://doi.org/10.1007/s11223-015-9652-0

 

Received: 23 May 2018