MODELING HEAT AND MASS EXCHANGE PROCESSES IN METAL-HYDRIDE INSTALLATIONS

image_print
DOI https://doi.org/10.15407/pmach2018.04.063
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 21, no. 4, 2018 (December)
Pages 63-70
Cited by J. of Mech. Eng., 2018, vol. 21, no. 4, pp. 63-70

 

Authors

Natalia A. Chorna, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi Str., Kharkiv, 61046, Ukraine), e-mail: nataliyachernaya7@gmail.com, ORCID: 0000-0002-9161-0298

Valerii V. Hanchyn, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi Str., Kharkiv, 61046, Ukraine), ORCID: 0000-0001-9242-6460

 

Abstract

Hydrogen as an environmentally friendly energy carrier is increasingly used in various sectors of the economy of industrialized countries, primarily to improve the environmental situation. Regardless of the field of application, metal hydride installations are energy conversion facilities, which is why the development of the scientific and technical principles of their creation is a new scientific direction of industrial heat and power engineering. The paper considers the peculiarities of the heat and mass exchange process in a hydrogen-metal system, which takes place in metal-hydride installations. A mathematical model of non-stationary heat and mass exchange processes in metal hydride complex-design devices is proposed. The results of the calculation and theoretical research performed by the authors about the prospects of using modern metal hydride technologies are presented. On the basis of the calculation and theoretical research, the influence of the accuracy of setting the heat transfer factor on the dynamics of hydrogen desorption is analyzed. The main factors that influence the choice of the geometric dimensions of a metal hydride element are identified. One of the peculiarities of the model is its versatility, which makes it possible to use it in modeling various types of energy-converting metal-hydride installations, as well as optimizing the design and operating modes of the designed metal-hydride systems. The introduction of the proposed technological solutions for creating metal hydride equipment opens up prospects of creating a wide range of specialized energy conversion installations, which will increase the level of utilizing secondary energy resources at different industrial enterprises, create real prerequisites for reducing thermal pollution of the environment and be an important step towards the implementation of Ukraine’s economic integration into the Pan-European system.

 

Keywords: energy conversion installations, heat and mass exchange processes, hydrogen, metal hydride, mathematical modeling.

 

Full text: Download in PDF

 

References

  1. Solovey, V. V., Ivanovskiy, A. I., & Chernaya, N. A. (2010). Energosberegayushchiye tekhnologii generatsii i energotekhnologicheskoy pererabotki vodoroda [Energy saving generation technologies and energy technology processing of hydrogen]. Kompressor. i energ. mashinostroyeniye − Compressor and Power Engineering, no. 2 (20), pp. 21–24 (in Russian).
  2. Solovey, V. V., Ivanovskiy, A. I., & Chernaya, N. A. (2009). Primeneniye termosorbtsionnykh kompressorov dlya komprimirovaniya vodoroda [Application of thermo-sorption compressors for hydrogen compression]. VEB-MPG-2009: Proceedings of the 6th International Symposium (Moscow, November 5–6, 2009)]. Moscow, pp. 79–92 (in Russian).
  3. Matsevityy, Yu. M., Solovey, V. V., & Chernaya, N. A. (2006). Povysheniye effektivnosti metallogidridnykh elementov teploispolzuyushchikh ustanovok [Increasing the efficiency of metal hydride elements of heat-using facilities]. Problemy Mashinostroyeniya Journal of Mechanical Engineering, vol. 9, no. 2, pp. 85–93 (in Russian).
  4. Solovei, V. V., Chorna, N. A., & Koshelnik, O. V. (2011). Rozrobka naukovo-tekhnichnykh pryntsypiv stvorennia teplovykorystovuiuchykh metalohidrydnykh system [Development of scientific and technical principles for the creation of heat-utilizing metal-hydride systems]. Energosberezheniye. Energetika. Energoaudit − Energy saving. Power engineering. Energy audit, no. 7 (89), pp. 67–73 (in Ukrainian).
  5. Koshelnik, O. V. & Chorna, N. A. (2012). Rozrobka ta analiz skhem vysokoefektyvnykh vodnevykh enerhoperetvoriuiuchykh ustanovok [Development and analysis of schemes of high-efficiency hydrogen power transforming plants]. Visnyk NTU «KhPI». Ser.: Enerhetychni ta Teplotekhnichni Protsesy i Ustatkuvannya Bulletin of the NTUKhPI”. Series: Power and Heat Engineering Processes and Equipment, no. 7, pp. 170–174 (in Ukrainian).
  6. Solovey, V. V., Koshelnik, A. V., & Chernaya, N. A. (2012). Modelirovaniye teplomassoobmennykh protsessov v metallogidridnykh teploispolzuyushchikh ustanovkakh [Modeling of heat and mass transfer processes in metal hydride heat-using installations]. Prom. teplotekhnika −Industrial Heat Engineering, vol. 34, no. 2, pp. 48–53 (in Russian).
  7. Skorokhod, V. V. & Solonina, Yu. M. (Eds.). (2015). Voden v alternatyvnii enerhetytsi ta novitnikh tekhnolohiiakh [Hydrogen in alternative energy and new technologies]. Kyiv: ”KIM”, 294 p. (in Ukrainian).
  8. Chorna, N. A. (2013). Udoskonalennia matematychnoi modeli teplomasoobminnykh protsesiv u vodnevykh metalohidrydnykh systemakh [Improving the mathematical model of heat and mass transfer processes in hydrogen metal hydride systems]. Problemy Mashinostroyeniya − Journal of Mechanical Engineering, vol. 16, no. 3, pp. 68–72 (in Ukrainian).
  9. Koshelnik, O. V. & Chorna, N. A. (2014). Perspektyvy vykorystannia vodnevykh enerhoperetvoriuiuchykh system dlia utylizatsii teplovykh vtorynnykh enerhoresursiv vysokotemperaturnykh teplotekhnolohichnykh kompleksiv [Perspectives of using hydrogen energy-transfer systems for the utilization of thermal secondary energy resources of high-temperature thermal-technological complexes]. Problemy Mashinostroyeniya − Journal of Mechanical Engineering, vol. 17, no. 2, pp. 46–53 (in Ukrainian).
  10. Chorna, N. A. & Zipunnikov, M. M. (2015). Udoskonalennia modeli teplomasoobminnykh protsesiv u vodnevykh metalhidrydnykh systemakh [Improvement of the model of heat and mass transfer processes in hydrogen metal hydride systems]. Ekologiya i prom-st – Ecology and Industry, no. 4, pp. 77–80 (in Ukrainian).
  11. Matsevityy, Yu. M. (2003). Obratnyye zadachi teploprovodnosti: v 2 t. T. 2. Prilozheniya [Inverse problems of heat conduction: in 2 vols. Vol. 2. Applications]. Kiyev: Naukova dumka, 392 p. (in Russian).
  12. Samarskiy, A. A. & Vabishchevich, P. N. (2009). Vychislitelnaya teploperedacha [Computational heat transfer]. Moscow: Knizhnyy dom “LIBROKOM”, 784 p. (in Russian).
  13. Samarskii, A. A. & Moiseyenko, B. D. (1965). An economic continuous calculation scheme for the stefan multidimensional problem. USSR Computational Mathematics and Mathematical Physics, vol. 5, iss. 5, pp. 43–58. https://doi.org/10.1016/0041-5553(65)90004-2
  14. Royak, M. E., Soloveychik, Yu. G., & Shurina, E. P. (1998). Setochnyye metody resheniya krayevykh zadach matematicheskoy fiziki [Grid methods for solving boundary value problems of mathematical physics]. Novosibirsk: NSTU publisher, 120 p. (in Russian).
  15. Ivanovskiy, A. I. (1990). Povysheniye effektivnosti szhatiya vodoroda v metallogidridnom termosorbtsionnom kompressore [Increasing the efficiency of hydrogen compression in a metal hydride thermo sorption compressor]. Thesis for the candidate of science degree in engineering. Kharkov: A. N. Podgorny Institute of Mechanical Engineering Problems of NASU (in Russian).
  16. Kutateladze, S. S. (1979). Osnovy teorii teploobmena [Fundamentals of the theory of heat transfer]. Moscow: Atomizdat, 416 p. (in Russian).

 

Received 27 June 2018

Published 30 December 2018