SUBSTANTIATION OF BOUNDARY ACCELERATIONS OF ROLLER FORMING UNIT OPTIMAL REVERSAL MODE ACCORDING TO FOURTH-ORDER ACCELERATION

image_print

J. of Mech. Eng., 2019, vol. 22, no. 1, pp. 38-52

DOI: https://doi.org/10.15407/pmach2019.01.038

 

Journal Journal of Mechanical Engineering
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 22, no. 1, 2019 (March)
Pages 38-52

 

Authors

Viacheslav S. Loveykin, National University of Life and Environmental Sciences of Ukraine (15, Heroiv Oborony Str., Kyiv, 03041, Ukraine), e-mail: lovvs@ukr.net, ORCID: 0000-0003-4259-3900

Konstantyn I. Pochka, Kyiv National University of Construction and Architecture (31, Povitroflotskyi Ave., Kyiv, 03037, Ukraine), e-mail: shanovniy@ukr.net, ORCID: 0000-0002-0355-002X

Nikolay A. Pristaylo, Kyiv National University of Construction and Architecture (31, Povitroflotskyi Ave., Kyiv, 03037, Ukraine), e-mail: pristaylo_na@ukr.net, ORCID: 0000-0003-3151-4680

Olga B. Pochka, Kyiv National University of Construction and Architecture (31, Povitroflotskyi Ave., Kyiv, 03037, Ukraine), e-mail: zasedkoolga@ukr.net, ORCID: 0000-0001-5701-978X

 

Abstract

In order to increase the reliability and durability of a roller forming unit, we calculated a combined mode of the reciprocating movement of a forming trolley with the reversal according to the fourth-order acceleration with the optimal values of boundary accelerations. In determining the combined mode of the reciprocating movement of the forming trolley with the reversal according to the fourth-order acceleration with the optimal values of boundary accelerations, the criterion of the movement was the criteria action, which is a time integral with the integrand function expressing the “energy” of the unit fourth-order accelerations. We calculated the functions of changing the kinematic characteristics of the forming trolley moving from one extreme position to another, with the functions corresponding to the combined mode of the reciprocating movement of the forming trolley with the reversal according to the fourth-order acceleration with the optimal values of boundary accelerations. It is proposed that the design use a drive in the form of a cam mechanism, for which we constructed a cam profile to provide for the combined mode of the reciprocating movement of the forming trolley with the reversal according to the fourth-order acceleration with the optimal values of boundary accelerations. It is also proposed that the roller forming unit design use a drive from a high-torque stepper motor embedded into the compaction rollers of the forming trolley. The use of the specified drive mechanism in the unit leads to a reduction in the dynamic loads in the drive mechanism elements and, accordingly, to an increase in the reliability and durability of the unit as a whole. The results of the work may further be useful for refining and improving the existing engineering methods for calculating the drive mechanisms of roller forming machines both at the design stages and in real operation modes. Also, the results of the work can be used in designing or improving mechanisms with the reciprocating movement of their actuating elements.

 

Keywords: installation, forming trolley, driving mode, drive, acceleration, cam, stepper motor

 

Full text: Download in PDF

 

References

  1. Harnets, V. M. (1991). Prohresyvni betonoformuiuchi ahrehaty i kompleksy [Progressive concrete-forming units and complexes]. Kyiv: Budivelnyk, 144 p. (in Ukrainian).
  2. Harnets, V. M., Zaichenko, S. V., Chovniuk, Yu. V., Shalenko, V. O., & Prykhodko, Ya. S. (2015). Betonoformuvalni ahrehaty. Konstruktyvno-funktsionalni skhemy, pryntsyp dii, osnovy teorii [Concrete forming units. Structural-functional schemes, principle of operation, theory fundamentals]. Kyiv: Interservis, 238 p. (in Ukrainian).
  3. Kuzin, V. N. (1981). Tekhnologiya rolikovogo formovaniya ploskikh izdeliy iz melkozernistykh betonov: avtoref. dis. … kand. nauk [Technology of the roll forming of flat products from fine-grained concretes (Author’s abstract of a Master’s Thesis). Moscow: inzh.-stroit.in-t (in Russian).
  4. Ryushin, V. T. (1986). Issledovaniye rabochego protsessa i razrabotka metodiki rascheta mashin rolikovogo formovaniya betonnykh smesey: dis. … kand. tekhn. nauk [Study of the operation and development of methods for calculating machines for the roll forming of concrete mixtures (Master’s thesis in engineering)] Kiyev: Kiyev. inzh. -stroit. in-t (in Russian).
  5. Loveikin, V. S. (2004). Dynamichnyi analiz rolykovoi formovochnoi ustanovky z rekuperatsiinym pryvodom. Dynamika, mitsnist i nadiinist s.-h mashyn [Dynamic analysis of a roller forming unit with a recuperative drive. Dynamics, durability, and reliability of agricultural machines]. I mizhnar. nauk.-tekhn.konf. (DSR AM-I). (Ternopil, 4-7 zhovt. 2004). Ternopil, pp. 507–514 (in Ukrainian).
  6. Loveikin, V. S. & Pochka, K. I. (2007). Rezultaty eksperymentalnykh doslidzhen rezhymiv rukhu rolykovoi formuvalnoi ustanovky z rekuperatsiinym pryvodom [Results of experimental studies of motion modes of a roller forming unit with a recuperative drive]. Khark. nats. techn. un-tu silsk. hosp-va im. P. Vasylenka Bulletin of the Kharkiv National Technical University of Agriculture named after P. Vasylenka, vol. 1, no. 59, pp. 465–474 (in Ukrainian).
  7. Nazarenko, I. I., Smirnov, V. M., Pelevin, L. Ye., Fomin, A. V., Sviderskyi, A. T., Kosteniuk, O. O., … & Martyniuk, I. Yu. (2013). Osnovy teorii rukhu zemleryinykh i ushchilniuvalnykh mashyn budindustrii z kerovanymy u chasi optymalnymy parametramy [Fundamentals of the theory of movement of earth moving and compaction machines in the constructive industry with time-optimized parameters]. Kyiv: MP Lesia, 188 p. (in Ukrainian).
  8. Zaichenko, S., Shalenko, V., Shevchuk, N., & Vapnichna, V. (2017). Development of a geomechanic complex for geotechnical monitoring contour mine groove. Eastern-European J. Enterprise Technologies, 3, no. 9 (87), pp. 19–25. https://doi.org/10.15587/1729-4061.2017.102067
  9. Harnets, V. M., Chovniuk, Yu. V., Zaichenko, S. V., Shalenko, V. O., & Prykhodko, Ya. S. (2004). Teoriia i praktyka stvorennia betonoformuvalnykh ahrehativ [Theory and practice of creating concrete-forming aggregates]. , bud., dor. ta melior. mashyny − Mining, construction, road and melioration machines, iss. 83, pp. 49–54 (in Ukrainian).
  10. Harnets, V. M., Zaichenko, S. V., Prykhodko, Ya. S., & Shalenko, V. O. (2012). Rozrobka naukovo-praktychnykh rekomendatsii po stvorenniu betonoformuiuchykh ahrehativ [Development of scientific and practical recommendations for the creation of concrete-forming aggregates]. , bud., dor. ta melior mashyny − Mining, construction, road and melioration machines, iss. 79, pp. 46–52 (in Ukrainian).
  11. Zaichenko, S. V., Shevchuk, S. P., & Harnets, V. M. (2012). Enerhetychnyi analiz protsesu rolykovoho ushchilnennia [Power analysis of roller compaction process]. Enerhetyka: Ekonomika, tekhnolohiia, ekolohiia − Energy: Economics, technology, ecology, no. 1 (30), pp. 77–83 (in Ukrainian).
  12. Zaichenko, S. V., Shevchuk, S. P., & Harnets, V. M. (2012). Tryvymirne modeliuvannia protsesu rolykovoho ushchilnennia stovburnoho kriplennia [Three-dimensional modeling of the process of roller compaction of bore supports]. , bud., dor. ta melior. mashyny − Mining, construction, road and melioration machines, iss. 79, pp. 40–45 (in Ukrainian).
  13. Prykhodko, Ya. S. & Harnets, V. M. (2012). Vzaiemouzghodzhenist roboty mekhanizmiv pry rolyko-ekstruziinomu formuvanni bahatopustotnykh vyrobiv [The coherence of the mechanisms of the work during the roller-extrusion formation of multi-hollow products]. Haluzeve mashynobud., bud-vo − Industrial Machine Building, Civil Engineering, 1 (31), pp. 305–310 (in Ukrainian).
  14. Loveikin, V. S. & Pochka, K. I. (2007). Vyznachennia optymalnoho znachennia kuta zmishchennia kryvoshypiv rolykovoi formuvalnoi ustanovky z rekuperatsiinym pryvodom [Determination of the optimum crankshaft displacement angle value of a roller forming unit with a recuperative drive]. Avtomatyzatsiia vyrob. protsesiv u mashynobud. ta pryladobud −Industrial Process Automation in Engineering and Instrumentation. NU “Lvivska politekhnika”, no. 41, pp. 127–134 (in Ukrainian).
  15. Loveikin, V. S. & Pochka, K. I. (2015). Dynamichna optymizatsiia rezhymu reversuvannia rolykovoi formuvalnoi ustanovky. [Dynamic optimization of the regression of a roller forming unit]. Mashynobuduvannia − Engineering. Kharkiv: UIPA, no. 15, pp. 76–86 (in Ukrainian).
  16. Loveikin, V. S. & Pochka, K. I. (2015). Optymizatsiia ryvkovoho rezhymu reversuvannia rolykovoi formuvalnoi ustanovky [Optimization of the jerk reversal mode of a roller molding unit]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia: tekhnika ta enerhetyka APK − Scientific Herald of NULES of Ukraine Series: Technique and energy of APK, ch. 1, iss. 212, pp. 186–197 (in Ukrainian).
  17. Loveikin, V. S. & Pochka, K. I. (2015). Optymizatsiia rezhymu reversuvannia rolykovoi formuvalnoi ustanovky za pryskorenniam tretoho poriadku [Optimization of the reversal mode of a roller forming unit according to the third order acceleration]. Visnyk Donbaskoi derzhavnoi mashynobudivnoi akademii: zbirnyk naukovykh prats − HERALD of the Donbass State Engineering Academy: Collection of science papers, 3 (36), pp. 16–26 (in Ukrainian).
  18. Loveykin, V. S. & Pochka, K. I. (2017). Sintez kulachkovogo privodnogo mekhanizma rolikovoy formovochnoy ustanovki s kombinirovannym rezhimom dvizheniya po uskoreniyu tretyego poryadka [Synthesis of a cam drive mechanism of a roller forming unit according to the third-order acceleration combined mode]. Nauka i tekhnika − Science & Technique, vol. 16, no. 3. pp. 206–214. (in Russian). https://doi.org/10.21122/2227-1031-2017-16-3-206-214
  19. Loveykin, V. S. (1990). Raschoty optimalnykh rezhimov dvizheniya mekhanizmov stroitelnykh mashin [Calculations of the optimal modes of movement of the mechanisms of construction machines]. Kiyev: UMK VO, 168 (in Russian).
  20. Degtyarev, Yu. (1980). Metody optimizatsii [Optimization methods]. Moscow: Sov. radio, 272 p. (in Russian).
  21. Rekleytis, G., Reyvindran, A., & Regsdel, K. (1986). Optimizatsiya v tekhnike. V 2-kh kn. Kn. 1. Per. s angl. [Engineering optimization (Vol. 1, trans. from English)]. Moscow: Mir, 352 p. (in Russian).
  22. Ustanovka dlya formuvannya virobív z betonnikh sumíshey [Unit for forming products from concrete mixtures]. P 105744, Ukraina, MPK V28V 13/00: no. a 201309305; zayavl. 25.07.2013; opubl. 10.06.2014 (in Russian).

 

Received 31 October 2018