Computational Model for Durability Analysis of Structure Elements with Defects

image_print
DOI https://doi.org/10.15407/pmach2020.01.027
Journal Journal of Mechanical Engineering
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 23, no. 1, 2020 (March)
Pages 27-38
Cited by J. of Mech. Eng., 2020, vol. 23, no. 1, pp. 27-38

 

Author

Vasyl I. Hnitko, A. Podgorny Institute of Mechanical Engineering Problems of NASU, (2/10, Pozharskyi St., Kharkiv, 61046, Ukraine), e-mail: gnitkovi@gmail.com, ORCID: 0000-0003-2475-5486

Kyrylo H. Dehtiarov, A. Podgorny Institute of Mechanical Engineering Problems of NASU, (2/10, Pozharskyi St., Kharkiv, 61046, Ukraine), e-mail: kdegt89@gmail.com, ORCID: 0000-0002-4486-2468

Roman P. Moskalenko, V. N. Karazin Kharkiv National University, (4, Svobody Sq., Kharkiv, 61022, Ukraine), e-mail: rimancamomile@gmail.com, ORCID: 0000-0002-5167-2793

Olena O. Strelnikova, A. Podgorny Institute of Mechanical Engineering Problems of NASU, (2/10, Pozharskyi St., Kharkiv, 61046, Ukraine), V. N. Karazin Kharkiv National University, (4, Svobody Sq., Kharkiv, 61022, Ukraine), e-mail: elena15@gmx.com, ORCID: 0000-0003-0707-7214

 

Abstract

A methodology for the determination of number of cycles before the destruction of structure elements exposed to cyclic loading (tension-compression) has been developed. The analysis of the structure element static and dynamic stress-strain state with a usage of numerical methods of finite and boundary elements in order to determine the stress concentration zones is carried out. Model cracks that are placed in the highest stress concentration zones are selected. A database of model cracks is proposed. The initial length at which crack development begins is determined with a usage of the stress intensity factor threshold value. For each crack from the database, a critical number of cycles during which the crack grows to unacceptable sizes, is found based on the Paris criterion. A method for determining stress intensity factors for a structure element with cracks is proposed. The problem is reduced to solving singular integral equations. To obtain a numerical solution of these equations, the boundary element method is used. Densities, which appear as unknown functions in the considered integral equations, are used to calculate stress intensity factors. The analytical and numerical solutions of singular equations are compared. The critical number of cycles for plates with isolated cracks and cracks chains, cracks located at the elements holes and boundaries is determined. It was established that at the same loading level, a smaller critical number of cycles corresponds to a structure element with cracks that are in close proximity to the technological hole. An analysis of the fatigue crack development at holes in an elastic-plastic statement in order to determine the number of cycles before destruction is made, estimated number of cycles before the fatigue crack appearance is given.

 

Keywords: durability, crack, stress intensity factor, singular integral equations, Paris criterion.

 

Full text: Download in PDF

 

References

  1. Andreykiv, A. Ye. & Darchuk, A. I. (1987). Ustalostnoye razrusheniye i dolgovechnost konstruktsiy [Fatigue failure and durability of structures]. Kiyev: Naukova Dumka, 404 p. (in Russian).
  2. Makhutov, N. A. (1981). Deformatsionnyye kriterii razrusheniya i raschet elementov konstruktsiy na ustalostnuyu prochnost [Deformation criteria of failure and calculation of structural elements for fatigue strength]. Moscow: Mashinostroyeniye, 272 p. (in Russian).
  3. Panasyuk, V. V., Andreykiv, A. Ye., & Kovchik, S. Ye. (1971) Metody otsenki treshchinostoykosti konstruktsionnykh materialov [Methods for assessing the crack resistance of structural materials]. Kiyev: Naukova dumka, 278 p. (in Russian).
  4. Fomichev, P. A. & Zvyagintsev, V. V. (2000). Prediction of the fatigue life of a notched body by the local stress-strain state. Part 1. Determination of stresses and strains in a notch under elastoplastic cyclic deformation. Strength of Materials, vol. 32, pp. 234–240. https://doi.org/10.1007/BF02509850.
  5. Fomichev, P. A. (2000). Prediction of Fatigue Life of a Notched Body by the Local Stress-Strain State. Part 3. Allowing for Stress and Strain Gradients. Strength of Materials, vol. 32, pp. 316–322. https://doi.org/10.1023/A:1026696316228.
  6. Zum, T. (1996). Verformungsverhalten von stahlbetontragwerken unter Betrieb-slelastung. Mitt. Inst. Wekst. Baum., no. 3, pp. 1–195.
  7. Abdelbaki, N., Bouali, E., Gaceb, M., & Bettayeb, M. (2009). Study of defect admissibility in gas pipelines based on fracture mechanics. J. Eng. Sci. Tech. (JESTEC), vol. 4, pp. 111–121.
  8. Kantor, B., Strelnikova, O., Medvedovska, T., Rzhevska, I., Yeseleva, O., Lynnyk, O., & Zelenska, O. (2011). Rozrakhunok zalyshkovoho resursu elementiv protochnoyi chastyny hidroturbin HES ta HAES [Calculation of residual life of elements of flowing part of hydropower turbines of hydropower and hydroelectric power plants]: Guidelines. Regulatory document. SOU-NMEV 40.1–21677681–51:2011: Approved Ministry of Energy and Coal Industry of Ukraine: entered into force 07.07.11. Kyiv: Ministry of Energy and Coal Industry of Ukraine, 76 p. (in Ukrainian).
  9. Stasevic, M. (2014). Attachment estimates century construction of the tower installations for oil and gas exploration: Doctoral thesis. University of Novi Sad. Faculty of Techn. Sci., 168 р.
  10. Bettayeb, M., Bouali, E., Abdelbaki, N., & Gaceb, M. (2012). Establishment of a database and a classification of the defects in the metal of pipes according to their severity. Procedia Engineering, vol. 42, pp. 607–615. https://doi.org/10.1016/j.proeng.2012.07.453.
  11. Maksimovic, Mirko S., Vasovich, Ivana V., Maksimovic, Katarina S. Trisovich, Natasha, & Maksimovic, Stevan M. (2018). Residual life estimation of cracked aircraft structural components. FME Transactions, vol. 124, no. 46, pp. 124–128. https://doi.org/10.5937/fmet1801124M.
  12. Kastratovic, G., Vidanovic, N., Grbovic, A., & Rasuo, B. (2018). Approximate determination of stress intensity factor for multiple surface cracks. FME Transactions, vol. 46, iss. 1, pp. 39–45. https://doi.org/10.5937/fmet1801039K.
  13. Strelnikova, Ye. A. & Kovch, O. I. (2015). Issledovaniye vzaimnogo vliyaniya por v svarnom shve pod vozdeystviyem termosilovoy nagruzki [Investigation of the mutual influence of pores in the weld under thermo-mechanical load]. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy – Eastern-European Journal of Enterprise Technologies, vol. 5, no. 7 (77), pp. 59–63 (in Russian). https://doi.org/10.15587/1729-4061.2015.51869.
  14. Zaydenvarg, O. L. & Strelnikova, Ye. A. (2009). Gipersingulyarnyye uravneniya v zadachakh prochnosti elementov konstruktsiy s treshchinami pri temperaturnom nagruzhenii [Hypersingular equations in the problems of strength of structural elements with cracks under temperature loading]. Visn. Khark. nats. un-tu. Ser. Matematychne modelyuvannya. Informatsiyni tekhnolohiyi. Avtomatyzovani systemy upravlinnyaBulletin of Kharkiv National University. Series: Mathematical Modeling. Information Technology. Automated Control System, no. 847, pp. 191–196 (in Russian).
  15. Lessenden, S. J., Pissot, S. P., Tretheway, M. V., & Naynaed, K. P. (2006). Torsion response of cracked steel shaft. Fatique fract. Eng. Mater. Struct., vol. 30, pp. 734–747. https://doi.org/10.1111/j.1460-2695.2007.01149.x.
  16. Misiura, S. Yu., Smetankina, N. V., & Misiura, Ye. Yu. (2019). Ratsionalne modeliuvannia kryshky hidroturbiny dlia analizu mitsnosti [Rational modeling of the turbine cover for strength analysis]. Visnyk NTU «KhPI». Seriia: Dynamika i mitsnist mashyn – Bulletin of NTU “KhPI”. Series: Dynamics and Strength of Machines, no. 1, pp. 34–39 (in Ukrainian). https://doi.org/10.20998/2078-9130.2019.1.187415.
  17. Medvedovskaya, T., Strelnikova, E., & Medvedyeva, K. (2015). Free hydroelastic vibrations of hydroturbine head covers. Int. J. Eng. and Advanced Research Techn., vol. 1, no. 1, pp. 45–50. https://doi.org/10.13140/RG.2.1.3527.4961.
  18. Yeseleva, Ye. V., Gnitko, V. I., & Strelnikova, Ye. A. (2006). Sobstvennyye kolebaniya sosudov vysokogo davleniya pri vzaimodeystvii s zhidkostyu [Natural vibrations of pressure vessels during interaction with a liquid]. Problemy Mashinostroyeniya Journal of Mechanical Engineering, vol. 9. no 1. pp.105–118. (in Russian).
  19. Panasyuk, V. V., Savruk, M. P., & Datsyshin. A. P. (1976). Raspredeleniye napryazheniy okolo treshchin v plastinakh i obolochkakh [Stress distribution near cracks in plates and shells]. Kiyev: Nauk. dumka, 444 p. (in Russian).
  20. Strelnikova, Ye. A. (2001). Gipersingulyarnyye integral’nyye uravneniya v dvumernykh krayevykh zadachakh dlya uravneniya Laplasa i uravneniy Lame [Hypersingular integral equations in two-dimensional boundary value problems for the Laplace equation and Lame equations]. Dop. NAN UkrayinyReports of the National Academy of Sciences of Ukraine, no 3. pp. 27–31 (in Russian).
  21. Kantor, B. Ya. & Strelnikova, Ye. A. (2005). Gipersingulyarnyye integralnyye uravneniya v zadachakh mekhaniki sploshnoy sredy [Hypersingular integral equations in problems of continuum mechanics]. Kharkov: Novoye slovo, 252 p. (in Russian).
  22. Gnitko, V., Naumemko, Y., & Strelnikova, E. (2017). Low frequency sloshing analysis of cylindrical containers with flat аnd conical baffles. Intern. J. Appl. Mech. and Eng., vol. 22, iss. 4, pp. 867–881. https://doi.org/10.1515/ijame-2017-0056.
  23. Peris, P. & Erdogan, F. (1987). Kriterii ustalostnogo rasprostraneniya treshchin [Criteria for the fatigue propagation of cracks]. Tekhn. mekhanika. Ser. DTech. Mechanics. Ser. D, no. 4, pp. 60–68 (in Russian).
  24. Strelnikova, Ye. A., Sirota, I. G., Linnik, A. V., Kalembet, L. A, Zarkhina, V. N., & Zaydenvarg, O. L. (2017). Veroyatnostnaya otsenka dolgovechnosti vala gidroturbiny pri nalichii treshchin. Problemy mashinostroyeniya [Probabilistic assessment of the durability of a turbine shaft in the presence of cracks]. Problemy Mashinostroyeniya Journal of Mechanical Engineering, vol. 20, no 1, pp. 28–35 (in Russian). https://doi.org/10.15407/pmach2017.01.028.
  25. Berendeyev, N. N. (2006). Primeneniye sistemy ANSYS k otsenke ustalostnoy dolgovechnosti [Application of the ANSYS system to the assessment of fatigue life]. Nizhniy Novgorod: Nizhegorod. un-t im. N. I. Lobachevskogo, 84 p. (in Russian).

 

Received 19 February 2020

Published 30 March 2020