Investigation of the Electrolysis Process of Obtaining Hydrogen and Oxygen with Serial and Parallel Connection of Electrons

image_print
DOI https://doi.org/10.15407/pmach2020.04.063
Journal Journal of Mechanical Engineering
Publisher A. Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 23, no. 4, 2020 (December)
Pages 63-71
Cited by J. of Mech. Eng., 2020, vol. 23, no. 4, pp. 63-71

 

Authors

Andrii A. Shevchenko, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi St., Kharkiv, 61046, Ukraine), e-mail: shevchenko84@ukr.net, ORCID: 0000-0002-6009-2387

Mykola M. Zipunnikov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi St., Kharkiv, 61046, Ukraine), ORCID: 0000-0002-0579-2962

Аnatolii L. Kotenko, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi St., Kharkiv, 61046, Ukraine), ORCID: 0000-0003-2715-634X

Natalia A. Chorna, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi St., Kharkiv, 61046, Ukraine), ORCID: 0000-0002-9161-0298

 

Abstract

This paper presents theoretical and experimental studies of the process of electrochemical generation of hydrogen and oxygen with a parallel and serial connection of electrodes in one electrolyte volume. This study is based on the laws of conservation of mass, thermodynamics, electrical engineering, electrochemistry, using data obtained from the methods of mathematical and physical modeling. Data on the development and research of two designs of electrode assemblies, namely, with a parallel and series connection of electrodes, and with the subsequent placement of each assembly in one electrolyte volume. Experimental and calculated data revealed the regularities of the electrochemical reaction of decomposition of the liquid electrolyte into hydrogen and oxygen, the distribution of voltage when the electrodes are connected in parallel and in series in one electrolyte volume. A change in the electric potential between the internal electrodes was also found. Voltage measurement was performed from electrode 1 to electrode 4. The results of experimental studies were displayed graphically. The graphs show that the voltage at the terminals of the internal electrodes is lower than necessary for the electrochemical reaction of decomposition of the liquid electrolyte with the generation of gaseous hydrogen and oxygen. To implement the concept of placing a series (bipolar) connection of electrodes in one electrolyte volume, it is necessary to focus on the design of the electrolyzer that will be able to disconnect the electrodes electrically and provide galvanic isolation between them (separately isolated electrolyte volumes for each electrode pair). This will increase the operating pressure of the generated hydrogen and oxygen to 20.0 MPa, reducing the current load of the electrolysis process when using alternative energy sources.

 

Keywords: electrolyzer, series and parallel connection of electrodes, hydrogen, oxygen, high pressure.

 

Full text: Download in PDF

 

References

  1. Iordache, I., Bouzek, K., Paidar, M., Stehlík, K., Töpler, J., Stygar, M., Dąbrowa, J., Brylewski, T., Stefanescu, I., Iordache, M., Schitea, D., Grigoriev, S. A., Fateev, V. N., & Zgonnik, V. (2019). The hydrogen context and vulnerabilities in the central and Eastern European countries. International Journal of Hydrogen Energy, vol. 44, iss. 35, pp. 19036–19054. https://doi.org/10.1016/j.ijhydene.2018.08.128.
  2. Esposito, D. V. (2017). Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future. Joule, vol. 1, iss. 4, pp. 651–658. https://doi.org/10.1016/j.joule.2017.07.003.
  3. Reuß, M., Reul, J., Grube, T., Langemann, M., Calnan, S., Robinius, M., Schlatmann, R., Rau, U., & Stolten, D. (2019). Solar hydrogen production: A bottom-up analysis of different photovoltaic–electrolysis pathways. Sustainable Energy Fuels, iss. 3, pp. 801–813. https://doi.org/10.1039/C9SE00007K.
  4. Wirkert, F. J., Roth, J., Jagalski, S., Neuhaus, P., Rost, U., & Brodmann, M. (2020). A modular design approach for PEM electrolyser systems with homogeneous operation conditions and highly efficient heat management. International Journal of Hydrogen Energy, vol. 45, iss. 2, pp. 1226–1235. https://doi.org/10.1016/j.ijhydene.2019.03.185.
  5. Chang, W. J., Lee, K.-H., Ha, H., Jin, K., Kim, G., Hwang, S.-T., Lee, H., Ahn, S.-W., Yoon, W., Seo, H., Hong, J. S., Go, Y. K., Ha, J.-I., Nam, K. T. (2017). Design principle and loss engineering for photovoltaic–electrolysis cell system. ACS Omega, vol. 2, iss. 3, pp. 1009–1018. https://doi.org/10.1021/acsomega.7b00012.
  6. Smolinka, T. (2009). Fuels – hydrogen production. Water electrolysis. Encyclopedia Electrochemical Power Sources, pp. 394–413. https://doi.org/10.1016/B978-044452745-5.00315-4.
  7. Phillips, R. & Dunnill, Ch. W. (2016). Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas. RSC Advances, vol. 6, iss. 102, pp. 100643–100651. https://doi.org/10.1039/C6RA22242K.
  8. Kaya, M. F., Demir, N., Rees, N. V., & El-Kharouf, A. (2020). Improving PEM water electrolyser’s performance by magnetic field application. Applied Energy, vol. 264, pp. 1–8. https://doi.org/10.1016/j.apenergy.2020.114721.
  9. Shevchenko, A. A., Zipunnikov, M. M., Kotenko, А. L., Vorobiova, I. O., & Semykin, V. M. (2019). Study of the influence of operating conditions on high pressure electrolyzer efficiency. Journal of Mechanical Engineering, vol. 22, no. 4, pp. 53–60. https://doi.org/10.15407/pmach2019.04.053.
  10. Maier, M., Meyer, Q., Majasan, J., Tan, C., Dedigama, I., Robinson, J., Dodwell, J., Wu, Y., Castanheira, L., Hinds, G., Shearing, P. R., & Brett, D. J. L. (2019). Operando flow regime diagnosis using acoustic emission in a polymer electrolyte membrane water electrolyser. Journal of Power Sources, vol. 424, pp. 138–149. https://doi.org/10.1016/j.jpowsour.2019.03.061.
  11. Matsevytyi, Yu. M., Chorna, N. A., & Shevchenko, A. A. (2019). Development of a perspective metal hydride energy accumulation system based on fuel cells for wind energetics. Journal of Mechanical Engineering, vol. 22, no. 4, pp. 48–52. https://doi.org/10.15407/pmach2019.04.048.
  12. Shevchenko, A. (2020). Sozdaniye avtonomnykh i setevykh energotekhnologicheskikh kompleksov s vodorodnym nakopitelem energii [Creation of autonomous and networked energy technology complexes with hydrogen energy storage. Renewable energy]. Vozobnovlyayemaya energetikaVidnovluvana energetika, no. 2 (61), pp. 18–27 (in Russian). https://doi.org/10.36296/1819-8058.2020.2(61).18-27.
  13. Shevchenko, A. A., Kozak, L. R., Zipunnikov, N. N., & Kotenko, A. L. (2020). Razrabotka avtonomnykh energotekhnologicheskikh kompleksov s vodorodnym nakopitelem energii [Development of autonomous energy technology complexes with hydrogen energy storage]. Kosmicheskaya tekhnika. Raketnoye vooruzheniyeSpace technology. Missile armaments, no. 1, pp. 160–169 (in Russian). https://doi.org/10.33136/stma2020.01.160.
  14. Aminov, R. Z., Bairamov, A. N., & Garievskii, M. V. (2020). Estimating the system efficiency of the multifunctional hydrogen complex at nuclear power plants. International Journal of Hydrogen Energy, vol. 45, iss. 29, pp. 14614–14624. https://doi.org/10.1016/j.ijhydene.2020.03.187.
  15. Morozov, Yu. P. (2018). Vliyaniye teplopritoka gornogo massiva na temperaturnyy rezhim geotermalnoy tsirkulyatsionnoy sistemy [Influence of heat flow of a mountain massif on the temperature regime of the geothermal circulation system]. Alternativnaya energetika i ekologiya (ISJAEE) Alternative Energy and Ecology (ISJAEE), no. 25–30, pp. 44–50 (in Russian). https://doi.org/10.15518/isjaee.2018.25-30.044-050.
  16. Sanath, Y., De Silva, K., Middleton, P. H., & Kolhe, M. (2019). Performance analysis of single cell alkaline electrolyser using mathematical model. IOP Conference Series: Materials Science and Engineering, vol. 605, pp. 1–13. https://doi.org/10.1088/1757-899X/605/1/012002.
  17. Davis, J. T., Qi, J., Fan, X., Bui, J. C., & Esposito, D. V. (2018). Floating membraneless PV-electrolyzer based on buoyancy-driven product separation. International Journal of Hydrogen Energy, vol. 43, iss. 3, pp. 1224–1238. https://doi.org/10.1016/j.ijhydene.2017.11.086.
  18. Solovey, V. V., Zhirov, A. S., & Shevchenko, A. A. (2003). Vliyaniye rezhimnykh faktorov na effektivnost elektrolizera vysokogo davleniya [Influence of regime factors on the efficiency of a high pressure electrolyzer]. Sovershenstvovaniye turboustanovok metodami matematicheskogo i fizicheskogo modelirovaniyaImprovement of turbine plants by methods of mathematical and physical modeling: collection of scientific papers, pp. 250–254 (in Russian).
  19. Nikolic, V. M., Tasic, G. S., Maksic, A. D., Saponjic, D. P., Miulovic, S. M., & Marceta Kaninski, M. P. (2010). Raising efficiency of hydrogen generation from alkaline water electrolysis–Energy saving. International Journal of Hydrogen Energy, vol. 35, iss. 22, pp. 12369–12373. https://doi.org/10.1016/j.ijhydene.2010.08.069.
  20. Schalenbach, M., Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). Pressurized PEM water electrolysis: Efficiency and gas crossover. International Journal of Hydrogen Energy, vol. 38, iss. 35, pp. 14921–14933. https://doi.org/10.1016/j.ijhydene.2013.09.013.
  21. Shevchenko, A. A. (1999). Ispolzovaniye ELAELov v avtonomnykh energoustanovkakh, kharakterizuyushchikhsya neravnomernostyu energopostupleniya [Use of ELAELs in autonomous power plants characterized by uneven energy supply]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya – Aerospace Engineering and Technology, no. 13, pp. 111–116 (in Russian).
  22. Liguori, S., Kian, K., Buggy, N., Anzelmo, B. H., & Wilcox, J. (2020). Opportunities and Challenges of Low-Carbon Hydrogen via Metallic Membranes. Progress in Energy and Combustion Science, vol. 80, pp. 1–29. https://doi.org/10.1016/j.pecs.2020.100851.
  23. Solovey, V. V., Shevchenko, A. A., Vorobyeva, I. A., Semikin, V. M., & Koversun, S. A. (2008). Povysheniye effektivnosti protsessa generatsii vodoroda v elektrolizerakh s gazopogloshchayushchim elektrodom [Increasing the efficiency of the hydrogen generation process in electrolyzers with a gas-absorbing electrode]. Vestnik Kharkovskogo natsionalnogo avtomobolno-dorozhnogo universitetaBulletin of Kharkov National Automobile and Highway University, no. 43, pp. 69–72 (in Russian).
  24. Solovey, V. V., Zipunnikov, N. N., & Shevchenko, A. A. (2015). Issledovaniye effektivnosti elektrodnykh materialov v elektroliznykh sistemakh s razdelnym tsiklom generatsii gazov [Research of the efficiency of electrode materials in electrolysis systems with a separate cycle of gas generation]. Problemy mashinostroyeniyaJournal of Mechanical Engineering, vol. 18, no. 1, pp. 72–76 (in Russian).
  25. Solovey, V. V., Khiem, N. T., Zipunnikov, M. M., & Shevchenko, A. А. (2018). Improvement of the membrane-less electrolysis technology for hydrogen and oxygen generation. French-Ukrainian Journal of Chemistry, vol. 6, no. 2, pp. 73–79. https://doi.org/10.17721/fujcV6I2P73-79.
  26. Yakimenko, L. M., Modylevskaya, I. D., & Tkachik, Z. A. (1970). Elektroliz vody [Water electrolysis]. Moscow: Khimiya, 264 p. (in Russian).
  27. Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, vol. 38, iss. 12, pp. 4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151.
  28. Solovey, V. V., Shevchenko, A., Kotenko, A., & Makarov, O. (2013). The device for generation high-pressure hydrogen. Patent of Ukraine no. 103681 IPC С25В 1/12, С25В 1/03, no. a201115332; stated 26.12.2011; published 11.11.2013, Bulletin no. 21, 4 p.
  29. Solovey, V. V., Zipunnikov, M. M., Shevchenko, A. A., Vorobjova, I. O., & Kotenko, A. L. (2018). Energy effective membrane-less technology for high pressure hydrogen electro-chemical generation. French-Ukrainian Journal of Chemistry, vol. 6, no. 1, pp. 151–156. https://doi.org/10.17721/fujcV6I1P151-156.
  30. Tomilov, A. P. (1984). Prikladnaya elektrokhimiya [Applied electrochemistry]: A textbook. Moscow: Khimiya, 520 p. (in Russian).
  31. Sukhotin, A. M. (1981). Spravochnik po elektrokhimii [Handbook of electrochemistry]. Leningrad: Khimiya, 488 p. (in Russian).
  32. Yakimenko, L. M. (1977). Elektrodnyye materialy v prikladnoy elektrokhimii [Electrode materials in applied electrochemistry]. Moscow: Khimiya, 264 p. (in Russian).
  33. Kumagai, M., Myung, S.-T., Kuwata, S., Asaishi, R., & Yashiro, H. (2008). Corrosion behavior of austenitic stainless steels as a function of pH for use as bipolar plates in polymer electrolyte membrane fuel cells. Electrochimica Acta, vol. 53, iss. 12, pp. 4205–4212. https://doi.org/10.1016/j.electacta.2007.12.078.
  34. Langemann, M., Fritz, D. L., Müller, M., & Stolten, D. (2015). Validation and characterization of suitable materials for bipolar plates in PEM water electrolysis. International Journal of Hydrogen Energy, vol. 40, iss. 35, pp. 11385–11391. https://doi.org/10.1016/j.ijhydene.2015.04.155.
  35. Tawfik, H., Hung, Y., & Mahajan, D. (2007). Metal bipolar plates for PEM fuel cell – a review. Journal of Power Sources, vol. 163, iss. 2, pp. 755–767. https://doi.org/10.1016/j.jpowsour.2006.09.088.

 

Received 09 November 2020

Published 30 December 2020