Retrospective Review of a Two-Phase Mechanically Pumped Loop for Spacecraft Thermal Control Systems

image_print
DOI https://doi.org/10.15407/pmach2021.04.027
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 24, no. 4, 2021 (December)
Pages 27-37
Cited by J. of Mech. Eng., 2021, vol. 24, no. 4, pp. 27-37

 

Authors

Gennadiy O. Gorbenko, Center of Technical Physics (17, Chkalov str., Kharkov, 61070, Ukraine), e-mail: gennadiy.gorbenko@ctph.com.ua

Pavlo H. Gakal, National Aerospace University “Kharkiv Aviation Institute” (17, Chkalov str., Kharkov, 61070, Ukraine), e-mail: p.gakal@khai.edu, ORCID: 0000-0003-3043-2448

Rustem Yu. Turna, Center of Technical Physics (17, Chkalov str., Kharkov, 61070, Ukraine), e-mail: rustem.turna@ctph.com.ua, ORCID: 0000-0001-5773-1400

Artem M. Hodunov, National Aerospace University “Kharkiv Aviation Institute” (17, Chkalov str., Kharkov, 61070, Ukraine), e-mail: artem.hodunov@ctph.com.ua, ORCID: 0000-0001-8850-8367

 

Abstract

The main issues associated with the development of two-phase mechanically pumped loops (2f-MPL) for thermal control systems of spacecraft with large heat dissipation were formulated back in the early 80s. They have undeniable advantages over single-phase loops with mechanical pumping and two-phase capillary pumped loops at power more than 6 kW and heat transfer distance more than 10 meters. Intensive research and development of such systems started in the USA together with European, Canadian and Japanese specialists due to plans to build new high-power spacecraft and the Space Station Freedom project. In the 90’s, S. P. Korolev Rocket and Space Corporation Energia (Russia) was developing a 2f-MPL for the Russian segment of the International Space Station with the capacity of 20…30 kW. For this purpose, leading research organizations of the former Soviet Union were involved. In the last two decades, interest in two-phase heat transfer loops has significantly increased because of high-power stationary communications satellites and autonomous spacecraft for Lunar and Martian missions. The paper presents a retrospective review of worldwide developments of 2f-MPLs for thermal control systems of spacecraft with large heat dissipation from the early 80’s to the present. The participation of scientists and engineers of the Ukrainian National Aerospace University “KhAI” and the Center of Technical Physics is considered. The main directions of research, development results, and scientific and technical problems on the way to the practical implementation of such system are considered. Despite a large amount of research and development work done, there were no practically implemented projects of spacecraft with the high-power thermal control system until recent days. The first powerful stationary satellite with the 2f-MPL was SES-17 satellite on the NEOSAT platform by Thales Alenia Space – France. The satellite was successfully launched into space on October 24, 2021 by onboard Ariane 5 launcher operated by Arianespace from the Europe’s Spaceport in Kourou, French Guiana.

 

Keywords: spacecraft; thermal control system; two-phase mechanically pumped loop.

 

Full text: Download in PDF

 

References

  1. Ollendorf, S. (1983). Recent and planned developments at the Goddard Space Flight Center in thermal control technology. Proceeding of the International Symposium on Environmental and Thermal Systems of Space Vehicles, Toulouse, France, pp. 45–51.
  2. Delil, A. A. M. (1984). Some considerations concerning two-phase flow thermal bus systems for spacecraft: Report. National Aerospace Laboratory NLR, NLR Memorandum RL-84-028 U. http://resolver.tudelft.nl/uuid:7ca02b9b-faee-4a38-8a91-050583530e1e.
  3. Raetz, J. & Dominick, J. (1992). Space station external thermal control system design and operational overview. Proceedings of International Conference on Environmental Systems. SAE International. https://doi.org/10.4271/921106.
  4. Brady, T. K. (1988). Space station thermal test bed status and plans. Proceedings of Intersociety Conference on Environmental Systems. SAE International. https://doi.org/10.4271/881068.
  5. Banaszynski, K., Hill, D. G., & Nguyen, D. C. (1992). A pump module for the space station freedom active thermal control system. Proceedings of International Conference on Environmental Systems. SAE International. https://doi.org/10.4271/921108.
  6. Bland, T. J., Downing, R. S., & Rogers, D. P. (1984). A two-phase thermal management system for large space platforms. Proceedings of 19th Thermophysics Conference. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1984-1758.
  7. Hill, D. G., Hsu, K., Parish, R., & Dominick, J. (1988). Reduced gravity and ground testing of a two-phase thermal management system for large spacecraft. Proceedings of Intersociety Conference on Environmental Systems. SAE International. https://doi.org/10.4271/881084.
  8. Chambliss, J. (1992). The evolution of the space station freedom thermal control system. Proceedings of International Conference on Environmental Systems. SAE International. https://doi.org/10.4271/921105.
  9. Kreeb, H., Möller, P., & Wulz, H. G. (1985). Development of a two-phase thermal cycle for European platforms. Deutsche Gesellschaft für Luftund Raumfahrt, International Symposium. Towards COLUMBUS and Space Station, Bonn – Bad Godesberg.
  10.  Nikonov, A. A., Gorbenko, G. A., & Blinkov, V. N. (1991). Teploobmennyye kontury s dvukhfaznym teplonositelem dlya sistem termoregulirovaniya kosmicheskikh apparatov [Heat exchange circuits with a two-phase coolant for thermal control systems of spacecraft]. Moscow: Center for Scientific and Technical Information “Poisk”, 302 p. (in Russian).
  11. Romanov, S. Yu., Sementsov, A. N., Gorbenko, G. A., Gakal, P. G., & Yepifanov, K. S. (2002). Analiz rabotosposobnosti dvukhfaznogo kontura teploperenosa v usloviyakh nevesomosti [Analysis of the performance of a two-phase heat transfer circuit under zero gravity]. Proceedings of the Third Russian National Conference on Heat and Mass Transfer. T. 5. Dvukhfaznyye techeniya. Dispersnyye potoki i poristyye sredy [Vol. 5. Two-phase flows. Dispersed flows and porous media]. Moscow: Moscow Power Engineering Institute Publ., pp. 102–105 (in Russian).
  12. Goncharov, K., Maidanik, Yu., & Fershtater, Yu. (1991). Capillary pumped loop for the systems of thermal regulation of spacecraft. Proceedings of 4th ICES, Florence, Oct. 21–24, 1991, pp. 125–129.
  13. Gorbenko, G. A., Ganzha, Ye. P., Malukhin, K. A., Prokopenkov, A. A., Tsikhotskiy, V. M., Sementsov, A. N., & Linkova, I. Yu. (1996). Dvukhfaznyy kontur teploperenosa Tsentralnoy sistemy teplootvoda rossiyskogo segmenta Mezhdunarodnoy kosmicheskoy stantsii «ALFA» [Two-phase heat transfer circuit of the Central Heat Removal System of the Russian Segment of the International Space Station “ALFA]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiyaAerospace engineering and technology, pp. 136–147 (in Russian).
  14. Grigoriev, Y. I., Cykhotsky, V. M., Prokhorov, Y. M., Surguchev, O. V., Gorbenko, G. A., Blinkov, V. N., Teniakov, I. E., & Malukhin, C. A. (1996). Two-phase heat transfer loop of central thermal control system of the International Space Station ALPHA Russian Segment. Proceedings of National Heat Transfer Conference. Houston, Texas, USA. pp. 9–18.
  15. Sementsov, A. N. (2003). Modelirovaniye dvukhfaznogo kontura teploperenosa tsentralizovannoy sistemy teplootvoda rossiyskogo segmenta mezhdunarodnoy kosmicheskoy stantsii v usloviyakh kosmicheskogo poleta [Modeling of a two-phase heat transfer circuit of the centralized heat removal system of the Russian segment of the International Space Station in space flight conditions]: Ph.D. dissertation abstract. S. P. Korolev Rocket and Space Corporation Energia, Moscow (in Russian).
  16. Cykhotsky, V. M., Sementsov, A. N., Grigoriev, Y. I., Prokhorov, Y. M., Gorbenko, G. A., Malukhin, C. A., & Ganja, E. P. (1999). Development and analysis of control methods of the International Space Station “ALPHA” Russian Segment Central Two-Phase Thermal Control System parameters. AIP Conference Proceedings, vol. 458, pp. 848–853. https://doi.org/10.1063/1.57706.
  17. Tsikhotskiy, V. M., Prokhorov, Yu. M., Sementsov, A. N., Linkova, I. Yu., Gorbenko, G. A., Yepifanov, K. S., Bednov, S. M., Bednov, P. D., Vezhnevets, P. D., Golikov, A. N., Desyatov, A. V., & Lukyanov, Yu. M. (1999). Letnaya eksperimentalnaya ustanovka – model dvukhfaznogo kontura teploperenosa rossiyskogo segmenta Mezhdunarodnoy kosmicheskoy stantsii [Flight experimental setup – model of a two-phase heat transfer circuit of the Russian segment of the International Space Station]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiyaAerospace engineering and technology, iss. 13, pp. 41–49 (in Russian).
  18. Iepifanov, K. S. (2004). Parametrychna identyfikatsiia robochykh protsesiv enerhetychnykh ustanovok z dvofaznym teplonosiiem dlia kosmichnykh aparativ [Parametric identification of working processes of power plants with two-phase coolant for spacecraft]: Ph.D. dissertation abstract. National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, 33 p. (in Ukrainian).
  19. Khramov, S. M. (2004). Eksperimentalnyye i raschetnyye issledovaniya perspektivnykh dvukhfaznykh sistem obespecheniya teplovogo rezhima kosmicheskikh apparatov i ikh elementov [Experimental and computational studies of promising two-phase systems for ensuring the thermal regime of spacecraft and their elements]: Ph.D. dissertation abstract. Keldysh Research Center, Moscow, 23 p. (in Russian).
  20. Basov, A. A., Leksin, M. A., & Prokhorov, Yu. M. (2017). Dvukhfaznyy kontur sistemy obespecheniya teplovogo rezhima nauchno-energeticheskogo modulya. Chislennoye modelirovaniye gidravlicheskikh kharakteristik [Two-phase contour of the system for ensuring the thermal regime of the scientific-power module. Numerical simulation of hydraulic characteristics]. Kosmicheskaya tekhnika i tekhnologiiSpace engineering and technology, no. 2, pp. 80–89 (in Russian).
  21.  Satellite Industry Association. State of the Satellite Industry Report: 2021 https://sia.org/news-resources/state-of-the-satellite-industry-report/
  22. Merino, A.-S., Hugon, J., Cailloce, Y., Michard, F., Tjiptahardia, T., Larue de Tournemine, A., & Laporte, C. (2010). Development of a two-phase mechanically pumped loop (2ФMPDL) for the thermal dissipation management of an active antenna. Proceedings of 40th International Conference on Environmental Systems. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2010-6032.
  23. Gakal, P. G., Ruzaykin, V. I., Turna, R. Yu., Chayka, D. V., Timoshchenko, V. M., & Ivanenko, N. I. (2011). Eksperimentalnyy stend dlya issledovaniya teplogidravlicheskikh protsessov v sisteme termoregulirovaniya telekommunikatsionnogo sputnika [Experimental stand for the study of thermohydraulic processes in the thermal control system of a telecommunications satellite]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiyaAerospace Engineering and Technology, no. 5, pp. 21–30 (in Russian).
  24. Gorbenko, G., Koval, P., Yepifanov, K., Gakal, P., & Turna, R. (2020). Mathematical model of heat-controlled accumulator (HCA) for microgravity conditions. SAE International Journal of Aerospace, vol. 13, iss. 1, pp. 5–23. https://doi.org/10.4271/01-13-01-0001.
  25. Hugon, J. & Larue de Tournemine, A. (2008). Development of a two-phase mechanically pumped loop (2ΦMPL) for the thermal control of telecommunication satellites. Proceedings of International Two-Phase Thermal Control Technology Workshop, ESTEC, The Netherlands.
  26. Chaix, A., Hugon, J., Hugonnot, P., & Delmas, A. (2014). Development of a two-phase mechanically pumped loop (2ΦMPL) for the thermal dissipation management of spacecraft: Simulation and test results. Proceedings of 44th International Conference on Environmental Systems. Tucson, Arizona, 17 p. http://hdl.handle.net/2346/59598.
  27. van Es, J., van Gerner, H. J., van Benthem, R. C., Lapensée, S., & Schwaller, D. (2016). Component developments in europe for mechanically pumped loop systems (MPLs) for cooling applications in space. Proceedings of 46th International Conference on Environmental Systems, Vienna, Austria, 14 p. https://ttu-ir.tdl.org/bitstream/handle/2346/67589/ICES_2016_196.pdf?sequence=1.
  28. SES-17 Successfully Launched on Ariane 5. SES: official site. https://www.ses.com/press-release/ses-17-successfully-launched-ariane-5.
  29. Ponnappan, R., Donovan, B., & Chow, L. (2002). High-power thermal management issues in space-based systems. AIP Conference Proceedings, vol. 608, iss. 1. https://doi.org/10.1063/1.1449709.
  30. Bhandari, P., Birur, G. C., Bame, D., Mastropietro, A. J., Karlmann, P., Liu, Y., & Miller, J. (2013). Performance of the mechanically pumped fluid loop rover heat rejection system used for thermal control of the Mars science laboratory curiosity rover on the surface of Mars. Proceedings of 43rd International Conference on Environmental Systems. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2013-3323.
  31. Sunada, E. (2016). A two-phase mechanically pumped fluid loop for thermal control of deep space science missions. Proceedings of 46th International Conference on Environmental Systems. http://hdl.handle.net/2346/67545.
  32. Furst, B., Sunada, E., Cappucci, S., Bhandari, P., Daimaru, T., & Nagai, H. (2017). A comparison of system architectures for a mechanically pumped two-phase thermal control system. Proceedings of 47th International Conference on Environmental Systems. http://hdl.handle.net/2014/46384.
  33. (2015). NASA Technology Roadmaps, TA 14: Thermal Management Systems: Report. NASA, Washington D.C., 97 p. https://www.nasa.gov/sites/default/files/atoms/files/2015_nasa_technology_roadmaps_ta_14_thermal_management_final.pdf.
  34. Ellis, M. C. & Kurwitz, R. C. (2016). Development of a pumped two-phase system for spacecraft thermal control. 46th International Conference on Environmental Systems, Vienna, Austria, pp. 1–16.
  35. (2013). Advanced Cooling Technologies Inc., Multi-phase pump system and method of pumping a two-phase fluid stream: Pat. US20140246095A1. USA.
  36. Bugby, D. (2007). Multi-evaporator hybrid two phase loop cooling system for small satellites. Proceedings of 21st Annual AIAA/USU Conference on Small Satellites, Logan, Utah. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1501&context=smallsat.
  37.  Hoang, T. T., Baldauff, R. W., & Cheung, K. H. (2007). Hybrid two-phase mechanical / capillary pumped loop for high-capacity heat transport. Proceedings of International Conference on Environmental Systems. SAE International. https://doi.org/10.4271/2007-01-3198.
  38. Lee, S. H., Mudawar, I., & Hasan, M. M. (2016). Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft. Applied Thermal Engineering, vol. 100, pp. 190–214. https://doi.org/10.1016/j.applthermaleng.2016.01.018.
  39. Delil, A. A. M., Heemskerk, J. F., Mastenbroek, O., Dubois, M., van Oost, S., Coesel, M. J. N., Supper, W., & Aceti, R. (1995). TPX for in-orbit demonstration of two-phase heat transport technology-evaluation of flight & post-flight experiment results. Proceedings of International Conference on Environmental Systems. SAE International. https://doi.org/10.4271/951510.
  40. van Es, J., Pauw, A., van Donk, G., van Gerner, H. J., Laudi, E., He, Z., Gargiulo, C., & Verlaat, B. (2013). AMS02 tracker thermal control cooling system commissioning and operational results. Proceedings of 43rd International Conference on Environmental Systems. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2013-3389.
  41. Alberti, G., Alvino, A., Ambrosi, G., Bardet, M., Battison, R., Borsini, R., Cao, S., Cao, J., Chen, Y., Es, J., Gargiulo, C., Guo, K., Guo, L., Zhenhui, H., Zhencheng, H., Koutsenko, V., Laudi, E., Lebedev, A., Lee, S., Li, T., & Zwartbol, T. (2013). Development of a thermal control system with mechanically pumped CO2 two phase loops for the AMS-02 tracker on the ISS. Cornell University. https://doi.org/10.1109/MAES.2013.130187.
  42. Liu, J., He, Y. F., Zhou, E. Z., & Zhao, W. J. (2011). Experimental investigation on the accumulator liquid distribution of mechanically pumped cooling system. Applied Mechanics and Materials, vol. 84–85, pp. 254–258. https://doi.org/10.4028/www.scientific.net/amm.84-85.254.
  43. Wang, Z. R., Zhang, X. B., Wen, S. Z., Huang, Z. C., Mo, D. C., Xue, Y. Q., & He, Z. H. (2017). Design and performance of a mechanically pumped two-phase loop to support the evaporation-condensation experiments on the TZ1. Case Studies in Thermal Engineering, vol. 10, pp. 650–655. https://doi.org/10.1016/j.csite.2017.11.008.
  44. Zhang, Z., Sun, X. H., Tong, G. N., Huang, Z. C., He, Z. H., Pauw, A., van Es, J., Battiston, R., Borsini, S., Laudi, E., Verlaat, B., & Gargiulo, C. (2011). Stable and self-adaptive performance of mechanically pumped CO2 two-phase loops for AMS-02 tracker thermal control in vacuum. Applied Thermal Engineering, vol. 31, iss. 17–18, pp. 3783–3791. https://doi.org/10.1016/j.applthermaleng.2011.07.015.
  45. Delil, A. A. M. (2002). Two-phase developments for the international space station ISS: – AMS-2 TTCS, a mechanically pumped two-phase CO2 cooling loop for the alpha magnetic spectrometer tracker experiment-CIMEX-3, versatile two-phase loop for the fluid science laboratory. Texas Academical Science, vol. 48, pp. 107–118. https://doi.org/10.1063/1.1541281.
  46. Meng, Q., Zhao, Z., Zhang, T., van Es, J., Pauw, A., Zhang, H., & Yan, Y. (2020). Experimental study on the transient behaviors of mechanically pumped two-phase loop with a novel accumulator for thermal control of space camera payload. Applied Thermal Engineering, vol. 179, Article ID 115714. https://doi.org/10.1016/j.applthermaleng.2020.115714.
  47. Turna, R. Yu. & Godunov, A. M. (2021). Sostoyaniye razrabotok dvukhfaznykh sistem termoregulirovaniya kosmicheskikh apparatov [State of development of two-phase thermal control systems for spacecraft] Aviatsionno-kosmicheskaya tekhnika i tekhnologiyaAerospace Engineering and Technology, no. 2, pp. 36–51 (in Russian).
  48. Turna, R. Yu. (2021). Razrabotka kontseptsii dvukhfaznoy sistemy teplootvoda sputnika [Development of the concept of a two-phase heat removal system for a satellite]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiyaAerospace Engineering and Technology, no. 1, pp. 31–46 (in Russian).
  49. SES-17 to launch on 22 October. SES: official site. https://www.ses.com/press-release/ses-17-launch-22-october.

 

Received 18 October 2021

Published 30 December 2021