Development of a Methodology for Calculating the Stress State and Resource of a Hydrogen Generator Using the Finite Element Method

image_print
DOI https://doi.org/10.15407/pmach2022.03.029
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 25, no. 3, 2022 (September)
Pages 29-39
Cited by J. of Mech. Eng., 2022, vol. 25, no. 3, pp. 29-39

 

Authors

Pavlo P. Hontarovskyi, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: gontarpp@gmail.com, ORCID: 0000-0002-8503-0959

Natalia V. Smetankina, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: nsmetankina@ukr.net, ORCID: 0000-0001-9528-3741

Nataliia H. Garmash, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: garm.nataly@gmail.com, ORCID: 0000-0002-4890-8152

Iryna I. Melezhyk, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: melezhyk81@gmail.com, ORCID: 0000-0002-8968-5581

Tetiana V. Protasova, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: tatyprotasova@gmail.com, ORCID: 0000-0003-1489-2081

 

Abstract

An experimental stand was created to study the thermobaric and chemical influence of hydrogen on the identification of hydrocarbon production. The said stand allows to reproduce chemical-technological processes as close as possible to real formation ones. This stand makes it possible to study the kinetics of not only hydrogen, thermobaric and chemical effects, but also other thermal gas chemical processes, including hydrogen generation. The main element of the experimental stand is a hydrogen generator, the components of which work at high pressures and temperatures under conditions of hydrogen embrittlement of mechanical properties and an aggressive environment that causes corrosion of its inner surface. Based on this, the development of a methodology for calculating the thermal stress state of the generator, its strength under hydrogen embrittlement conditions, and its resource becomes relevant. Based on the finite element method, a methodology for calculating non-stationary temperature fields and the thermal stress state that occur in the hydrogen generator during thermobaric and chemical processes of varying intensity is proposed. The methodology allows to take into account the features of the geometry of the structure, the time-varying temperature and pressure distributions of the reaction products, the temperature dependence of the thermophysical and mechanical properties of the hydrogen generator material. Thanks to the application of the developed software, a study of the hydrogen generator thermal stress state during two real thermobaric and chemical processes of different intensity was carried out. Graphs of temperature and pressure changes of the reaction products of hydroreactive substances in the generator over time, which were registered during the experiment conduction, were used. The distribution of non-stationary temperature fields and stresses in the hydrogen generator elements was obtained. Areas of maximum load of generator elements are defined. It was established that during the flow of the studied thermobaric and chemical processes, pressure makes a greater contribution to the thermal stress state. The obtained results and the developed theory and software can be used in the study of generators of other designs with other thermobaric and chemical processes occurring in them.

 

Keywords: hydrogen generator, thermobaric and chemical process, temperature fields, thermal stress state, resource.

 

Full text: Download in PDF

 

References

  1. Velihotskyi, D. O. & Kravchenko, O. V. (2018). Stvorennia perspektyvnoi vodnevoi tekhnolohii pidvyshchennia debitu ta hlybyny vyluchennia nafty cherez vykorystannia vodenheneruvalnykh nanosuspenzii [Developing an advanced hydrogen technology for increasing the production rate and depth of extraction of oil by using hydrogen-producing nano suspensions]. Aktualni problemy ta perspektyvy rozvytku heolohii: nauka y vyrobnytstvo – Actual problems and prospects of the development of geology: science and production: materials of the 5th International Geological Forum (GEOFORUM-2018), June 18–23, 2018, Odesa. Kyiv: UkrDHRI, vol. 2, pp. 99–107 (in Ukrainian).
  2. Kravchenko, O. V., Veligotskyi, D. A., Avramenko, A. N., & Khabibullin, R. A. (2014). Sovershenstvovaniye tekhnologii kompleksnogo vozdeystviya na produktivnyye plasty neftyanykh i gazovykh skvazhin [An improved technology of a complex influence on productive layers of oil and gas wells]. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy – Eastern-European Journal of Enterprise Technologies, vol. 6, no. 5 (72), pp. 4–9 (in Russian). https://doi.org/10.15587/1729-4061.2014.29316.
  3. Veligotskiy, D. A. & Bashtovoy, A. V. (2018). Ustanovka dlya kompleksnykh issledovaniy pronitsayemosti i filtratsionnykh kharakteristik kernov gornoy porody [Installation for complex studies of permeability and filtration characteristics of rock cores]. Sovremennyye problemy mashinostroyeniya [Modern problems of mechanical engineering]: theses of reports of young scientists and specialists, April 17–20, 2018, Kharkiv, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU. Kharkiv: A. Pidhornyi Institute of Mechanical Engineering Problems of NASU, p. 30 (in Russian).
  4. Kravchenko, O., Veligotskyi, D., Bashtovyi, A., & Veligotska, Yu. (2019). Improving the controllability and effectiveness of the chemical-technological process of the technology for hydrogen thermobaric chemical stimulation of hydrocarbon recovery. Eastern-European Journal of Enterprise Technologies, vol. 6, no. 6 (102), pp. 57–66. https://doi.org/10.15587/1729-4061.2019.188615.
  5. Ovchinnikov, I. I. (2012). Issledovaniye povedeniya obolochechnykh konstruktsiy, ekspluatiruyushchikhsya v sredakh, vyzyvayushchikh korrozionnoye rastreskivaniye [Investigation of the behavior of shell structures operated in media causing corrosion cracking]. Naukovedeniye – Eurasian Scientific Journal, no. 4, pp. 1–30 (in Russian).
  6. Vasilenko, I. I. & Melekhov, R. K. (1977). Korrozionnoye rastreskivaniye staley [Corrosion cracking of steels]. Kiyev: Naukova dumka, 264 p. (in Russian).
  7. Kolachev, B. A. (1985). Vodorodnaya khrupkost’ metallov [Hydrogen brittleness of metals]. Moscow: Metallurgiya, 216 p. (in Russian).
  8. Podgornyy, A. N., Gontarovskiy, P. P., Kirkach, B. N., Matyukhin, Yu. I., & Khavin, G. L. (1989). Zadachi kontaktnogo vzaimodeystviya elementov konstruktsiy [Problems of contact interaction of structural elements]. Kiyev: Naukova dumka, 232 p. (in Russian).
  9. Hontarovskyi, P. P., Smetankina, N. V., Garmash, N. H., & Melezhyk, I. I. (2020). Analysis of crack growth in the wall of an electrolyser compartment. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 23, no. 4, pp. 38–44. https://doi.org/10.15407/pmach2020.04.038.
  10. Hontarovskyi, Р. Р., Smetankina, N. V., Ugrimov, S. V., Garmash, N. H., & Melezhyk, I. I. (2021). Numerical investigations of the crack resistance of ion-exchange strengthened sheet glass under bending strains. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 24, no. 3, pp. 27–34. https://doi.org/10.15407/pmach2021.03.027.
  11. Dmytrakh, I. M., Vainman, A. B., Stashchuk, M. H., & Tot, L. (2005). Mekhanika ruinuvannia ta mitsnist materialiv [Mechanics of fracture mechanics and strength of materials]: The reference guide. Vol. 7. Nadiinist ta dovhovichnist elementiv konstruktsii teploenerhetychnoho ustatkuvannia [Reliability and durability of structural elements of thermal power equipment]. Kyiv: Akademperiodyka, 378 p. (in Ukrainian).
  12. Hontarovskyi, Р. Р., Smetankina, N. V., Ugrimov, S. V., Garmash, N. H., & Melezhyk, I. I. (2022). Computational studies of the thermal stress state of multilayer glazing with electric heating. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 25. no. 2, pp. 14–21. https://doi.org/10.15407/pmach2022.02.014.

 

Received 10 September 2022

Published 30 September 2022