Effect of 3D Shape of Pump-Turbine Runner Blade on Flow Characteristics in Turbine Mode

DOI https://doi.org/10.15407/pmach2022.04.006
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 25, no. 4, 2022 (December)
Pages 6-14
Cited by J. of Mech. Eng., 2022, vol. 25, no. 4, pp. 6-14



Andrii V. Rusanov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: rusanov@ipmach.kharkov.ua, ORCID: 0000-0002-9957-8974

Viktor H. Subotin, JSC “Ukrainian Energy Machines” (199, Heroiv Kharkova ave., Kharkiv, 61037, Ukraine), e-mail: office@ukrenergymachines.com, ORCID: 0000-0002-2489-5836

Oleg M. Khoryev, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: oleg_xo@ukr.net, ORCID: 0000-0001-6940-4183

Yurii A. Bykov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: bykow@ipmach.kharkov.ua, ORCID: 0000-0001-7089-8993

Pavlo O. Korotaiev, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: korotaiev@gmail.com, ORCID: 0000-0002-7473-9508

Yevhen S. Ahibalov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: agibalov@ipmach.kharkov.ua, ORCID: 0000-0003-3866-9992



The effect of blade spatial profiling with the help of tangential blade lean of Francis pump-turbine runner with heads up to 200 m on the flow structure and energy characteristics was numerically investigated. A flow part model of Francis pump-turbine of the Dniester pumped storage plant was adopted as original version. Two new blade systems were designed, which differed from the original version by mutual position of cross-sections in tangential direction: with positive and negative lean, while the shape of the cross-sections themselves remained unchanged. Modeling of the viscous incompressible flow in calculation domain, which contains one channel of the guide vane and the runner, for three variants of flow parts, was performed using the IPMFlow software based on numerical integration of the Reynolds equations with an additional term containing artificial compressibility. To take into account the turbulent effects, the SST differential two-parameter turbulence model of Menter is applied. Numerical integration of the equations is carried out using an implicit quasi-monotonic Godunov scheme of second order accuracy in space and time. The study was carried out for models with runner diameter of 350 mm in a wide range of guide vane openings at reduced rotation frequencies corresponding to the minimal, design and maximal heads of the station. A comparison of pressure fields and velocity vectors in the runners, pressure graphs on runner blades, distribution of velocity components at inlet to a draft tube, and efficiency of three variants of flow parts are presented. It was concluded that calculation domain with the new RK5217M2 runner with negative tangential lean has the best characteristics. An experimental study of three runners on a hydrodynamic stand are planned.


Keywords: runner blade, Francis pump-turbine, flow part, tangential lean, numerical study, spatial flow, flow structure.


Full text: Download in PDF



  1. (2022). Renewable Energy Statistics 2022: Report. International Renewable Energy Agency (IRENA): official site. 450 p. https://www.irena.org/publications/2022/Jul/Renewable-Energy-Statistics-2022.
  2. Landau, Yu. (2022). Hidroenerhetyka ta yii rol u perebudovi ekonomiky Ukrainy [Hydropower and its role in restructuring the economy of Ukraine]. Uriadovyi kurier – Government Courier: official site (in Ukrainian). Available at: https://ukurier.gov.ua/uk/articles/gidroenergetika-ta-yiyi-rol-u-perebudovi-/ (accessed 11/29/2022).
  3. Hunt, J. D., Zakeri, B., Nascimento, A., & Brandao, R. (2022). 3-pumped hydro storage (PHS). Storing Energy (Second Edition), pp. 37–65. https://doi.org/10.1016/B978-0-12-824510-1.00008-8.
  4. (2022). Hydropower Status Report 2022: Report. International Hydropower Association (IHA): official site. 52 p. https://www.hydropower.org/publications/2022-hydropower-status-report.
  5. Flores, E., Bornard, L., Tomas, L., Liu, J., & Couston, M. (2012). Design of large Francis turbine using optimal methods. IOP Conference Series: Earth and Environmental Science, vol. 15, article no. 022023, 9 p. https://doi.org/10.1088/1755-1315/15/2/022023.
  6. Abeykoon, C. (2022). Modelling and optimisation of a Kaplan turbine – A comprehensive theoretical and CFD study. Cleaner Energy Systems, vol. 3, article no. 100017. https://doi.org/10.1016/j.cles.2022.100017.
  7. Du, J., Ge, Z., Wu, H., Shi, X., Yuan, F., Wei, Y., Wang, D., & Yang, X. (2022). Study on the effects of runner geometric parameters on the performance of micro Francis turbines used in water supply system of high-rise buildings. Energy, vol. 256, article no. 124616. https://doi.org/10.1016/j.energy.2022.124616.
  8. Cerriteno, A., Delgado, G., Galvan, S., Dominguez, F., & Ramirez, R. (2021). Reconstruction of the Francis 99 main runner blade using a hybrid parametric approach. IOP Conference Series: Earth and Environmental Science, vol. 774, article no. 012074. https://doi.org/10.1088/1755-1315/774/1/012074.
  9. Delgado, G., Galvan, S., Dominguez-Mota, F., Garcia, J. C., & Valencia, E. (2020). Reconstruction methodology of a Francis runner blade using numerical tools. Journal of Mechanical Science and Technology, vol. 34, pp. 1237–1247. https://doi.org/10.1007/s12206-020-0222-4.
  10. Leguizamon, S. & Avellan, F. (2020). Open-source implementation and validation of a 3D inverse design method for Francis turbine runners. Energies, vol. 13, iss. 8, article no. 2020. https://doi.org/10.3390/en13082020.
  11. Rusanov, R. A., Rusanov, A. V., Lampart, P., & Chugay, M. A. (2016). Improving the efficiency of radial-axial rotors of turbine stages through the use of complex lean of trailing edges. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 19, no. 4, pp. 6–11. https://doi.org/10.15407/pmach2016.04.006.
  12. Rusanov, A. V., Rusanov, R. A., Pashchenko, N. V., & Chuhai, M. O. (2018). Analytical method of profiling axial-radial compressor impellers. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 21, no. 4, pp. 4–13. https://doi.org/10.15407/pmach2018.04.004.
  13. Ma, Z., Zhu, B., Rao, C., & Shangguan, Y. (2019). Comprehensive hydraulic improvement and parametric analysis of a Francis turbine runner. Energies, vol. 12, iss. 2, article no. 307. https://doi.org/10.3390/en12020307.
  14. Ye, W., Geng, C., & Luo, X. (2022). Unstable flow characteristics in vaneless region with emphasis on the rotor-stator interaction for a pump turbine at pump mode using large runner blade lean. Renewable Energy, vol. 185, pp. 1343–1361. https://doi.org/10.1016/j.renene.2021.12.129.
  15. Yu, Z.-F., Wang, W.-Q., Yan, Y., Wang, H.-Y., & Wu, W.-L. (2022). Evaluating energy-efficiency improvement of variable-speed operation with the help of entropy: A case study of low-head Francis turbine. Sustainable Energy Technologies and Assessments, vol. 53, part A, article no. 102468. https://doi.org/10.1016/j.seta.2022.102468.
  16. Iliev, I., Tengs, E. O., Trivedi, C., & Dahlhaug, O. G. (2020). Optimization of Francis turbines for variable speed operation using surrogate modeling approach. Journal of Fluids Engineering. Transactions of the ASME, vol. 142, iss. 10, article no. 101214. https://doi.org/10.1115/1.4047675.
  17. Tengs, E., Charrassier, F., Jordal, M. R., & Iliev, I. (2021). Fully automated multidisciplinary design optimization of a variable speed turbine. IOP Conference Series: Earth and Environmental Science, vol. 774, article no. 012031. https://doi.org/10.1088/1755-1315/774/1/012031.
  18. Chirkov, D., Filatova, A., & Polokhin, S. (2021). Multi-objective shape optimization of Francis runner using metamodel assisted genetic algorithm. IOP Conference Series: Earth and Environmental Science, vol. 774, article no. 012109. https://doi.org/10.1088/1755-1315/774/1/012109.
  19. Qin, Y., Li, D., Wang, H., Liu, Z., Wei, X., & Wang, X. (2022). Multi-objective optimization design on high pressure side of a pump-turbine runner with high efficiency. Renewable Energy, vol. 190, pp. 103–120. https://doi.org/10.1016/j.renene.2022.03.085.
  20. Lestriez, R., Calvo, D., & Mendicino, D. (2021). Advanced Optimization Tools for Hydro Turbine Runner Design. IOP Conference Series: Earth and Environmental Science, vol. 774, article no. 012001. https://doi.org/10.1088/1755-1315/774/1/012001.
  21. Aponte, R. D., Teran, L. A., Grande, J. F., Coronado, J. J., Ladino, J. A., Larrahondo, F. J., & Rodriguez, S. A. (2020). Minimizing erosive wear through a CFD multi-objective optimization methodology for different operating points of a Francis turbine. Renewable Energy, vol. 145, pp. 2217–2232. https://doi.org/10.1016/j.renene.2019.07.116.
  22. Linnik, A. V., Ryabova, S. A., Varenko, V. D., Ryabov, A. V., & Khorev, O. N. (2016). Raschetnyye i eksperimental’nyye issledovaniya protochnykh chastey PL20 dlya modernizatsii gidroturbin Kremenchugskoy gidroelektrostantsii [Calculated and experimental studies of the flow paths of PL20 turbines to modernize the Kremenchug hydroelectric power station hydro turbines]. Problemy mashinostroyeniya Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 19, no. 3, pp. 12–19 (in Russian). https://doi.org/10.15407/pmach2016.03.012.
  23. Rusanov, A., Khorуev, O., Agibalov, Y., Bykov, Y., & Korotaiev, P. (2021). Numerical and experimental research of radial-axial pump-turbine models with spliters in turbine mode. In: Nechyporuk, M., Pavlikov, V., & Kritskiy, D. (eds.). Integrated Computer Technologies in Mechanical Engineering – 2020. ICTM 2020. Lecture Notes in Networks and Systems. Cham: Springer, vol 188, pp. 427–439. https://doi.org/10.1007/978-3-030-66717-7_36.
  24. Bykov, Y., Khoryev, O., Korotaiev, P., Dedkov, V., & Agibalov, Y. (2022). Numerical investigation of unsteady flow in draft tube with ribs. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), pp. 589–594. https://doi.org/10.1109/KhPIWeek57572.2022.9916461.
  25. Krzemianowski, Z. & Steller, J. (2021). High specific speed Francis turbine for small hydro purposes – Design methodology based on solving the inverse problem in fluid mechanics and the cavitation test experience. Renewable Energy, vol. 169, pp. 1210–1228. https://doi.org/10.1016/j.renene.2021.01.095.


Received 30 November 2022

Published 30 December 2022