First Basic Problem of Elasticity Theory for a Composite Layer with Two Thick-Walled Tubes

image_print
DOI https://doi.org/10.15407/pmach2024.04.040
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 27, no. 4, 2024 (December)
Pages 40-50
Cited by J. of Mech. Eng., 2024, vol. 27, no. 4, pp. 40-50

 

Authors

Oleksandr Yu. Denshchykov, National Aerospace University “Kharkiv Aviation Institute” (17, Vadyma Manka str., Kharkiv, 61070, Ukraine), e-mail: Alex_day@ukr.net, ORCID: 0009-0008-2385-5841

Valentyn P. Pelykh, National Aerospace University “Kharkiv Aviation Institute” (17, Vadyma Manka str., Kharkiv, 61070, Ukraine), e-mail: venator.verba@gmail.com, ORCID: 0009-0007-5301-6697

Yaroslav V. Hrebeniuk, National Aerospace University “Kharkiv Aviation Institute” (17, Vadyma Manka str., Kharkiv, 61070, Ukraine), e-mail: i.grebeniuk@khai.edu, ORCID: 0009-0004-6032-7125

Vitalii Yu. Miroshnikov, National Aerospace University “Kharkiv Aviation Institute” (17, Vadyma Manka str., Kharkiv, 61070, Ukraine), e-mail: v.miroshnikov@khai.edu, ORCID: 0000-0002-9491-0181

 

Abstract

The spatial problem of elasticity theory for a fibrous composite in the form of a layer with two thick-walled cylindrical tubes is solved. Stresses are given on the flat surfaces of the layer and on the inner surface of the tubes. The solution to the problem is presented in the form of Lamé equations in different coordinate systems, where the layer is considered in a Cartesian system and the tubes – in local cylindrical ones. To combine the basic solutions in different coordinate systems, the generalized Fourier method is used. Satisfying the boundary conditions and conjugation conditions between the layer and the tubes, an infinite system of integro-algebraic equations is formed, which is reduced to linear algebraic equations of the second kind, and the reduction method is applied. After finding the unknowns, it is possible to obtain the stress-strain state at any point of the elastic combined bodies using the generalized Fourier method to the basic solutions of the problem. According to the results of numerical studies, it can be stated that the problem can be solved with a given accuracy, which depends on the order of the system of equations and has a rapid convergence of solutions to the exact one. Numerical analysis of the stressed state was considered with a variation of the distance between the tubes. The graphs of the distribution of internal stresses in the tubes and the layer are obtained. The results show an inverse relationship between the magnitude of stresses and the distance between the tubes. In addition to the absolute value of stresses, changes in the character of the diagrams and the sign are possible. The proposed method of solution can be applied in the design of a layer with tubes. The obtained stress-strain state makes it possible to preliminarily evaluate the geometric parameters of the structure. Further development of the research topic is necessary for a model where tubes are combined with other types of inhomogeneities.

 

Keywords: fibrous composite, generalized Fourier method, Lamé equation.

 

Full text: Download in PDF

 

References

  1. Aitharaju, V., Aashat, S., Kia, H., Satyanarayana, A., & Bogert, P. (2016). Progressive damage modeling of notched composites. NASA Technical Reports Server. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160012242.pdf.
  2. Kondratiev, A. V., Gaidachuk, V. E., & Kharchenko, M. E. (2019). Relationships between the ultimate strengths of polymer composites in static bending, compression, and tension. Mechanics of Composite Materials, vol. 55, iss. 2, pp. 259–266. https://doi.org/10.1007/s11029-019-09808-x.
  3. Tekkaya, A. E. & Soyarslan, C. (2014). Finite element method. In: Laperrière, L., Reinhart, G. (eds) CIRP Encyclopedia of Production Engineering. Berlin, Heidelberg: Springer, pp. 508–514. https://doi.org/10.1007/978-3-642-20617-7_16699.
  4. Static Structural Simulation Using Ansys Discovery. https://courses.ansys.com/index.php/courses/structural-simulation.
  5. Zasovenko, A. V. & Fasoliak, A. V. (2023). Matematychne modeliuvannia dynamiky pruzhnoho pivprostoru z tsylindrychnoiu porozhnynoiu, yaka pidkriplena obolonkoiu, pry osesymetrychnykh navantazhenniakh [Mathematical modeling of the dynamics of an elastic half-medium with a cylindrical cavity reinforced by a shell under axisymmetric loads]. Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni – New Materials and Technologies in Metallurgy and Mechanical Engineering, no. 2, pp. 67–73 (in Ukrainian). https://doi.org/10.15588/1607-6885-2023-2-10.
  6. Guz, A. N., Kubenko, V. D., & Cherevko, M. A. (1978). Difraktsiya uprugikh voln [Elastic wave diffraction]. Kyiv: Naukova dumka, 307 p. (in Russian).
  7. Grinchenko, V. T. & Meleshko, V. V. (1981). Garmonicheskiye kolebaniya i volny v uprugikh telakh [Harmonic vibrations and waves in elastic bodies]. Kyiv: Naukova dumka, 284 p. (in Russian).
  8. Smetankina, N., Kurennov, , & Barakhov, K. (2023). Dynamic stresses in the adhesive joint. The Goland-Reissner model. In: CioboatăD. D. (eds) International Conference on Reliable Systems Engineering (ICoRSE) – 2023. ICoRSE 2023. Lecture Notes in Networks and Systems. Cham: Springer, vol. 762, pp. 456–468. https://doi.org/10.1007/978-3-031-40628-7_38.
  9. Ugrimov, S., Smetankina, N., Kravchenko, O., Yareshchenko, V., & Kruszka, L. (2023). A study of the dynamic response of materials and multilayer structures to shock loads. In: Altenbach H., et al. Advances in Mechanical and Power Engineering. CAMPE 2021. Lecture Notes in Mechanical Engineering. Cham: Springer, pp. 304–313. https://doi.org/10.1007/978-3-031-18487-1_31.
  10. Smetankina, N., Merkulova, A., Merkulov, D., Misura, S., & Misiura, Ie. (2023). Modelling thermal stresses in laminated aircraft elements of a complex form with account of heat sources. In: CioboatăD. (eds) International Conference on Reliable Systems Engineering (ICoRSE) – 2022. ICoRSE 2022. Lecture Notes in Networks and Systems. Cham: Springer, vol. 534, pp. 233–246. https://doi.org/10.1007/978-3-031-15944-2_22.
  11. Smetankina, N., Kravchenko, , Merculov, V., Ivchenko, D., & Malykhina, A. (2020). Modelling of bird strike on an aircraft glazing. In book: Nechyporuk M., Pavlikov V., Kritskiy D. (eds) Integrated Computer Technologies in Mechanical Engineering. Advances in Intelligent Systems and Computing. Cham: Springer, vol. 1113, pp. 289–297. https://doi.org/10.1007/978-3-030-37618-5_25.
  12. Fesenko, A. & Vaysfel’d, N. (2019). The wave field of a layer with a cylindrical cavity. In: Gdoutos, E. (eds) Proceedings of the Second International Conference on Theoretical, Applied and Experimental Mechanics. ICTAEM 2019. Structural Integrity, vol. 8. Cham: Springer, pp. 277–282. https://doi.org/10.1007/978-3-030-21894-2_51.
  13. Fesenko, A. & Vaysfel’d, N. (2021). The dynamical problem for the infinite elastic layer with a cylindrical cavity. Procedia Structural Integrity, vol. 33, pp. 509–527. https://doi.org/10.1016/j.prostr.2021.10.058.
  14. Jafari, M., Chaleshtari, M. H. B., Khoramishad, H., & Altenbach H. (2022). Minimization of thermal stress in perforated composite plate using metaheuristic algorithms WOA, SCA and GA. Composite Structures, vol. 304, part 2, article 116403. https://doi.org/10.1016/j.compstruct.2022.116403.
  15. Malits, P. (2021). Torsion of an elastic half-space with a cylindrical cavity by a punch. European Journal of Mechanics – A/Solids, vol. 89, article 104308. https://doi.org/10.1016/j.euromechsol.2021.104308.
  16. Khechai, A., Belarbi, M.-O., Bouaziz, A., & Rekbi, F. M. L. (2023). A general analytical solution of stresses around circular holes in functionally graded plates under various in-plane loading conditions. Acta Mechanica, vol. 234, pp. 671–691. https://doi.org/10.1007/s00707-022-03413-1.
  17. Snitser, A. R. (1996). The reissner-sagoci problem for a multilayer base with a cylindrical cavity. Journal of Mathematical Sciences, vol. 82, iss. 3, pp. 3439–3443. https://doi.org/10.1007/bf02362661.
  18. Nikolayev, A. G. & Protsenko, V. S. (2011). Obobshchennyy metod Furye v prostranstvennykh zadachakh teorii uprugosti [Generalized Fourier method in spatial problems of the theory of elasticity]. Kharkiv: National Aerospace University “Kharkiv Aviation Institute”, 344 p. (in Russian).
  19. Nikolaev, A. G. & Tanchik, E. A. (2015). The first boundary-value problem of the elasticity theory for a cylinder with N cylindrical cavities. Numerical Analysis and Applications, vol. 8, pp. 148–158. https://doi.org/10.1134/S1995423915020068.
  20. Nikolaev, A. G. & Tanchik, E. A. (2016). Stresses in an elastic cylinder with cylindrical cavities forming a hexagonal structure. Journal of Applied Mechanics and Technical Physics, vol. 57, pp. 1141–1149. https://doi.org/10.1134/S0021894416060237.
  21. Nikolaev, A. G. & Tanchik, E. A. (2016). Model of the stress state of a unidirectional composite with cylindrical fibers forming a tetragonal structure. Mechanics of Composite Materials, vol. 52, pp. 177–188. https://doi.org/10.1007/s11029-016-9571-6.
  22. Nikolayev, A. G. & Orlov, Ye. M. (2012). Resheniye pervoy osesimmetrichnoy termouprugoy krayevoy zadachi dlya transversalno-izotropnogo poluprostranstva so sferoidalnoy polostyu [Solution of the first axisymmetric thermoelastic boundary value problem for a transversally isotropic half-space with a spheroidal cavity]. Problemy vychislitelnoy mekhaniki i prochnosti konstruktsiy – Problems of Computational Mechanics and Strength of Structures, iss. 20, pp. 253–259 (in Russian).
  23. Ukrayinets, N., Murahovska, O., & Prokhorova, O. (2021). Solving a one mixed problem in elasticity theory for half-space with a cylindrical cavity by the generalized Fourier method. Eastern-European Journal of Enterprise Technologies, vol. 2, no. 7 (110), pp. 48–57. https://doi.org/10.15587/1729-4061.2021.229428.
  24. Miroshnikov, V. Yu., Denysova, T. V., & Protsenko, V. S. (2019). Doslidzhennia pershoi osnovnoi zadachi teorii pruzhnosti dlia sharu z tsylindrychnoiu porozhnynoiu [Study of the first fundamental problem of the theory of elasticity for a layer with a cylindrical cavity]. Opir materialiv i teoriia sporudStrength of Materials and Theory of Structures, no. 103, pp. 208–218 (in Ukrainian). https://doi.org/10.32347/2410-2547.2019.103.208-218.
  25. Miroshnikov, V. Yu., Medvedeva, A. V., & Oleshkevich, S. V. (2019). Determination of the stress state of the layer with a cylindrical elastic inclusion. Materials Science Forum, vol. 968, pp. 413–420. https://doi.org/10.4028/www.scientific.net/MSF.968.413.
  26. Miroshnikov, V. Yu. (2019). Investigation of the stress state of a composite in the form of a layer and a half space with a longitudinal cylindrical cavity at stresses given on boundary surfaces. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 22, no. 4, pp. 24–31. https://doi.org/10.15407/pmach2019.04.024.
  27. Miroshnikov, V. Yu., Savin, O. B., Hrebennikov, M. M., & Demenko, V. F. (2023). Analysis of the stress state for a layer with two incut cylindrical supports. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 26, no. 1, pp. 15–22. https://doi.org/10.15407/pmach2023.01.015.
  28. Miroshnikov, V. Yu., Savin, O. B., Hrebennikov, M. M., & Pohrebniak, O. A. (2022). Analysis of the stress state of a layer with two cylindrical elastic inclusions and mixed boundary conditions. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 25, no. 2, pp. 22–29. https://doi.org/10.15407/pmach2022.02.022.
  29. Miroshnikov, V. Yu. (2019). Investigation of the stress strain state of the layer with a longitudinal cylindrical thick-walled tube and the displacements given at the boundaries of the layer. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 22, no. 2, pp. 44–52. https://doi.org/10.15407/pmach2019.02.044.
  30. Miroshnikov, V. (2023). Rotation of the layer with the cylindrical pipe around the rigid cylinder. In: Altenbach H., et al. Advances in Mechanical and Power Engineering. CAMPE 2021. Lecture Notes in Mechanical Engineering. Cham: Springer, pp. 314–322. https://doi.org/10.1007/978-3-031-18487-1_32.

 

Received 31 May 2024

Published 30 December 2024