Concept of K-300 Series Steam Turbine Flow Part Modernization for Transition to Operation with Ultra-Supercritical Steam Parameters

image_print
DOI https://doi.org/10.15407/pmach2025.02.006
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 28, no. 2, 2025 (June)
Pages 6-16
Cited by J. of Mech. Eng., 2025, vol. 28, no. 2, pp. 6-16

 

Author

Roman A. Rusanov, Anatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine (2/10, Komunalnykiv str., Kharkiv, 61046, Ukraine), e-mail: roman_rusanov@ipmach.kharkov.ua, ORCID: 0000-0003-2930-2574

 

Abstract

A concept of the K-300 series steam turbine flow part for transition to operation with ultra-supercritical initial steam parameters is described in the paper. A loop scheme with two-tier blades of the steam turbine flow part has been proposed for the first time in the world. The main turbine parameters, such as pressure and temperature at the inlet to the high-pressure cylinder (HPC), temperature of the intermediate superheat, temperature and mass flow rate at the outlet from the low-pressure cylinder, were selected. The turbine is designed to operate with initial parameters of fresh steam at a pressure of 35 MPa and a temperature of 700 °C with intermediate steam superheating to 700 °C. The flow part was divided into cylinders with a preliminary estimate of the number of HPC and intermediate-pressure cylinder (IPC) stages and determination of their axial dimensions. The feasibility of using a loop scheme with two-tier blades in HPC and IPC flow parts was substantiated, and thermal drop in stages were determined. The main geometric characteristics of the HPC and IPC stages were determined taking into account the loop scheme and two-tier blades. A three-dimensional model was developed and the flow in the turbine flow parts was calculated. The obtained results show a high internal efficiency of the new HPC and IPC flow parts of 94.18% and 94.5%, respectively. This will increase the efficiency of the power plant up to 49.2% and provide an increase in capacity by 80.64 MW.

 

Keywords: steam turbine, ultra-supercritical steam parameters, gas-dynamic efficiency, mathematical modeling, flow part.

 

Full text: Download in PDF

 

References

  1. Bazeyev, Ye. T., Bileka, B. D., Vacilyev, Ye. P., Varlamov, G. B., Volchin, I. A., & Dashkiyev, Yu. G. (2011). Energetika: istoriya, nastoyashcheye i budushcheye. Razvitiye teployenergetiki i gidroenergetiki [Power engineering: history, present and future. Development of thermal power engineering and hydropower engineering]. Kyiv: OOO “Redaktsiya “Energetika: istoriya, nastoyashcheye i budushcheye”, 400 p. (in Russian).
  2. Mysak, S., Kuznetsova, M., & Martynyak-Andrushko, M. (2021). Switching 300 MW power-generating units with gas-and-oil-fired boilers to increased load mode. Energy Engineering and Control Systems, vol. 7, no. 1, pp. 32–37. https://doi.org/10.23939/jeecs2021.01.032.
  3. Campbell, R. J. (2015). Increasing the efficiency of existing coal-fired power plants. In: Phillips, S. (ed). Coal-Fired Power Plants: Efficiency Improvement Options. New York: Nova Science Publishers, pp. 77–111.
  4. Shubenko, O. L., Senetskyi, O. V., & Babenko, O. A. (2014). Pidvyshchennia efektyvnosti paroturbinnykh ustanovok riznoi potuzhnosti [Improving the efficiency of steam-turbine plants of different capacities]. Skhidno-yevropeiskyi zhurnal peredovykh tekhnolohiiEastern-European Journal of Enterprise Technologies, vol. 2, no. 8 (68), pp. 13–19 (in Ukrainian). https://doi.org/10.15587/1729-4061.2014.23387.
  5. Kostikov, A. O., Shubenko, O. L., Subotin, V. H., Senetskyi, O. V., Tarasova, V. O., Holoshchapov, V. M., & Babak, M. Yu. (2021). Principal modernization solutions for a 300 MW power unit to be converted to operate at ultra-supercritical steam parameters. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 24, no. 4, pp. 38–49. https://doi.org/10.15407/pmach2021.04.038.
  6. Feng, W. (2008). 1000 MW ultra-supercritical turbine steam parameter optimization. Frontiers of Energy and Power Engineering in China, vol. 2, pp. 187–193. https://doi.org/10.1007/s11708-008-0030-5.
  7. Tramošljika, B., Blecich, P., Bonefačić, I., & Glažar, V. (2021). Advanced ultra-supercritical coal-fired power plant with post-combustion carbon capture: Analysis of electricity penalty and CO2 emission reduction. Sustainability, vol. 13, iss. 2, article 801. https://doi.org/10.3390/su13020801.
  8. (2025). Steam turbines from 10 kW to 1,900 MW. Siemens-Energy AG: official website. https://www.siemens-energy.com/global/en/home/products-services/product-offerings/steam-turbines.html.
  9. (2025). Steam turbine services for steam plants. GE Vernova: official website. https://www.gevernova.com/steam-power.
  10. (2025). Steam turbines. Mitsubishi Power, Ltd: official website. https://power.mhi.com/products/steamturbines.
  11. (2025). Steam turbine. JSC “Ukrainian Energy Machines”: official website. https://ukrenergymachines.com/en/map.
  12. Purgert, R., Shingledecker, J., Saha, D., Thangirala, M., Booras, G., Powers, J., Riley, C., & Hendrix, H. (2015). Materials for advanced ultrasupercritical steam turbines: Final technical report DE-FE0000234, 535 p. https://doi.org/10.2172/1243058.
  13. Wang, B. & Zhao, Y. Z. (2018). Quantitative analysis of energy consumption for cylinder efficiency of a Shanghai electric – siemens ultra-supercritical 660 MW steam turbine unit. IOP Conference Series: Earth and Environmental Science, vol. 188, article 012090. https://doi.org/10.1088/1755-1315/188/1/012090.
  14. Di Gianfrancesco, A. (2017). New Japanese materials for A-USC power plants. In: Di Gianfrancesco, A. (eds.) Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants. Woodhead Publishing, pp. 423–468. https://doi.org/10.1016/B978-0-08-100552-1.00013-0.
  15. (2024). Attacks on Ukraine’s energy infrastructure harm civilian population: Bulletin of UN Human Rights Monitoring Mission in Ukraine, 16 p. https://ukraine.un.org/sites/default/files/2024-09/ENG%20Attacks%20on%20Ukraine%E2%80%99s%20Energy%20Infrastructure-%20%20Harm%20to%20the%20Civilian%20Population_0.pdf.
  16. Chernousenko, O. Yu., Ryndiuk, D. V., & Peshko, V. A. (2020). Otsinka zalyshkovoho resursu ta podovzhennia ekspluatatsii parovykh turbin velykoi potuzhnosti [Assessment of the residual resource and extension of operation of high-power steam turbines]. Part 3: Monograph for scientists and doctors of philosophy in the specialty 144 “Heat Power Engineering”. Kyiv: National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 297 p. (in Ukrainian).
  17. Kostikov, A. O., Shubenko, O. L., Tarasova, V. O., Yakovliev, V. A., & Mazur, A. O. (2023). Ways of TPP power units modernization during their conversion to ultra-supercritical steam parameters. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 26, no. 4, pp. 6–16. https://doi.org/10.15407/pmach2023.04.006.
  18. Rusanov, A., Subotin, V., Shvetsov, V., Rusanov, R., Palkov, S., Palkov, I., & Chugay, M. (2022). Application of innovative solutions to improve the efficiency of the LPC flow part of the 220 MW NPP steam turbine. Archives of Thermodynamics., vol. 43, no. 1, pp. 63−87. https://doi.org/10.24425/ather.2022.140925.
  19. Rusanov, R., Subotin, V. Rusanov, A., Shvetsov, V., Palkov, S., Palkov, I., & Chugay, M. (2024). Application of innovative solutions to improve the efficiency of the low-pressure cylinder flow part of a 1000 MW steam turbine for nuclear power plant. Archives of Thermodynamics, vol. 45, no. 4, pp. 141‒152. https://doi.org/10.24425/ather.2024.152003.
  20. Rusanov, A., Rusanov, R., Klonowicz, P., Lampart, P., Żywica, G., & Borsukiewicz, A. (2021). Development and experimental validation of real fluid models for CFD calculation of ORC and steam turbine flows. Materials, vol. 14, iss. 22, article 6879. https://doi.org/10.3390/ma14226879.
  21. Baietta, L., Alshammari, M., Pesyridis, A., & Gohil, D. (2020). Design of an axial turbine for highly downsized internal combustion engines. Applied Sciences, vol. 10, iss. 17, article 5935, 41 p. https://doi.org/10.3390/app10175935.
  22. Rusanov, A. V., Rusanov, R. A., Dehtiarov, K. H., Palkov, S. A., Palkov, I. A., & Kriutchenko, D. V. (2024). Protochna chastyna parovoi turbiny petlovoho typu dlia roboty na ultra-superkrytychnykh pochatkovykh parametrakh pary [Flow part of a loop-type steam turbine for operation at ultra-supercritical initial steam parameters]: Patent for utility model No. 156077, IPC: F01D25/30, published 08.05.2024, Bulletin No. 19/2024 (in Ukrainian).
  23. Yershov, S. V. (1994). Kvazimonotonnaya ENO skhema povyshennoy tochnosti dlya integrirovaniya uravneniy Eylera i Nav’ye-Stoksa [Quasimonotonic ENO scheme of increased accuracy for integrating the Euler and Navier-Stokes equations]. Matematicheskoye modelirovaniyeMathematical Modeling, vol. 6, no. 11, pp. 58–64 (in Russian).
  24. Menter, F. R. (1994). Two-equation eddy viscosity turbulence models for engineering applications. AIAA Journal, vol. 32, no. 8, pp. 1598–1605. https://doi.org/10.2514/3.12149.
  25. Rusanov, A. V., Lampart, P., Pashchenko, N. V., & Rusanov, R. A. (2016). Modelling 3D steam turbine flow using thermodynamic properties of steam IAPWS-95. Polish Maritime Research, vol. 23, iss. 1, pp. 61–67. https://doi.org/10.1515/pomr-2016-0009.
  26. Rusanov, R. A., Rusanov, A. V., Kriutchenko, D. V., Bykov, Yu. A., & Degtyarev, K. G. (2024). Computer modeling temperature and strength characteristics of an ultra-supercritical loop-type steam turbine rotor. Bulletin of V. N. Karazin Kharkiv National University. Series “Mathematical modelling. Information technology. Automated control systems”, vol. 64, pp. 86–99. https://doi.org/10.26565/2304-6201-2024-64-08.
  27. Rusanov, A. V., Rusanov, R. A., Dehtiarov, K. H., Palkov, S. A., Palkov, I. A., Kriutchenko, D. V., Bykov, Yu. A. Systema okholodzhennia lopatok rotora turbiny petlovoho typu [Cooling system for loop-type turbine rotor blades]: Patent for utility model No. 156085, IPC: F01D5/18, published 08.05.2024, Bulletin No. 19/2024 (in Ukrainian).

 

Received 25 March 2025

Accepted 15 April 2025

Published 30 June 2025