First Main Problem of the Theory of Elasticity for a Layer with Two Thick-Walled Pipes and One Cylindrical Cavity

image_print
DOI https://doi.org/10.15407/pmach2025.02.044
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 28, no. 2, 2025 (June)
Pages 44-53
Cited by J. of Mech. Eng., 2025, vol. 28, no. 2, pp. 44-53

 

Author

Oleksandr Yu. Denshchykov, National Aerospace University “Kharkiv Aviation Institute” (17, Vadyma Manka str., Kharkiv, 61070, Ukraine), e-mail: Alex_day@ukr.net, ORCID: 0009-0008-2385-5841

 

Abstract

Structures that are fixed on cylindrical inclusions are among the most common ones in machine and aircraft construction. Some of these inclusions can be modeled as thick-walled pipes with specified stress values on the inner surface. However, the literature does not provide accurate methods for calculating these structures, which indicates the relevance of posing and solving such problems. The presented paper considers the solution method for the model of the structure, which is an elastic homogeneous layer located on two pipes embedded into it and having a longitudinal cylindrical cavity that is parallel to layer boundaries. On the flat surfaces of the cavity surface layer, on the inner surfaces of the pipes, the stresses are considered known. When solving the problem, two types of coordinate systems are used: Cartesian for the layer and cylindrical for the pipes and cavity. The basic solutions in different coordinate systems are given as Lamé equations and combined using transition functions and the generalized Fourier method. An infinite system of integro-alberic equations is formed based on the boundary conditions on the upper and lower surfaces of the layer, the surface of the cavity, and the continuity conditions between the layer and the pipes. After that, the system of equations is reduced to linear algebraic equations of the second kind, to which the reduction method is applied. The problem is solved numerically with a given accuracy, which allowed obtaining the stress-strain state at any point of the elastic body. An analysis of the stress state is carried out with different values of the distance between the thick-walled pipes. On the upper and lower boundaries of the layer, and on the surface of the cylindrical surface, the stresses are considered known. The obtained results do not show a significant effect on the stress along the lower and upper surfaces of the layer. At the same time, the stresses in the layer along the surface of the pipe and layer junction decrease as the distance between the pipes increases. The obtained numerical results can be used in the prediction of geometric parameters during design.

 

Keywords: layer with cylindrical inclusions, thick-walled pipes, generalized Fourier method, Lamé equation, fibrous composite.

 

Full text: Download in PDF

 

References

  1. Tekkaya, A. E. & Soyarslan, C. (2014). Finite element method. In: Laperrière, L., Reinhart, G. (eds) CIRP Encyclopedia of Production Engineering. Berlin, Heidelberg: Springer, pp. 508–514. https://doi.org/10.1007/978-3-642-20617-7_16699.
  2. Karvatskyi, A. Ya. (2018). Metod skinchennykh elementiv u zadachakh mekhaniky sutsilnykh seredovyshch. Laboratornyi praktykum z navchalnoi dystsypliny [Finite element method in problems of mechanics of continuous media. Laboratory practical course on the academic discipline]: A textbook. Kyiv: National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 391 p. (in Ukrainian).
  3. Zasovenko, A. V. & Fasoliak, A. V. (2023). Matematychne modeliuvannia dynamiky pruzhnoho pivprostoru z tsylindrychnoiu porozhnynoiu, yaka pidkriplena obolonkoiu, pry osesymetrychnykh navantazhenniakh [Mathematical modeling of the dynamics of an elastic half-medium with a cylindrical cavity reinforced by a shell under axisymmetric loads]. Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni – New Materials and Technologies in Metallurgy and Mechanical Engineering, no. 2, pp. 67–73 (in Ukrainian). https://doi.org/10.15588/1607-6885-2023-2-10.
  4. Azarov, A. D., Zhuravlev, G. A., & Piskunov, A. S. (2015). Sravnitelnyy analiz analiticheskogo i chislennogo metodov resheniya ploskoy zadachi o kontakte uprugikh tsilindrov [Comparative analysis of analytical and numerical methods for solving the plane problem of elastic cylinder contact]. Innovatsionnaya nauka – Innovative Science, no. 1–5, pp. 5–13 (in Russian).
  5. Guz, A. N., Kubenko, V. D., & Cherevko, M. A. (1978). Difraktsiya uprugikh voln [Elastic wave diffraction]. Kyiv: Naukova dumka, 307 p. (in Russian).
  6. Grinchenko, V. T. & Meleshko, V. V. (1981). Garmonicheskiye kolebaniya i volny v uprugikh telakh [Harmonic vibrations and waves in elastic bodies]. Kyiv: Naukova dumka, 284 p. (in Russian).
  7. Fesenko, A. & Vaysfel’d, N. (2019). The wave field of a layer with a cylindrical cavity. In: Gdoutos, E. (eds) Proceedings of the Second International Conference on Theoretical, Applied and Experimental Mechanics. ICTAEM 2019. Structural Integrity, vol. 8. Cham: Springer, pp. 277–282. https://doi.org/10.1007/978-3-030-21894-2_51.
  8. Fesenko, A. & Vaysfel’d, N. (2021). The dynamical problem for the infinite elastic layer with a cylindrical cavity. Procedia Structural Integrity, vol. 33, pp. 509–527. https://doi.org/10.1016/j.prostr.2021.10.058.
  9. Khechai, A., Belarbi, M.-O., Bouaziz, A., & Rekbi, F. M. L. (2023). A general analytical solution of stresses around circular holes in functionally graded plates under various in-plane loading conditions. Acta Mechanica, vol. 234, pp. 671–691. https://doi.org/10.1007/s00707-022-03413-1.
  10. Jafari, M., Chaleshtari, M. H. B., Khoramishad, H., & Altenbach H. (2022). Minimization of thermal stress in perforated composite plate using metaheuristic algorithms WOA, SCA and GA. Composite Structures, vol. 304, part 2, article 116403. https://doi.org/10.1016/j.compstruct.2022.116403.
  11. Malits, P. (2021). Torsion of an elastic half-space with a cylindrical cavity by a punch. European Journal of Mechanics – A/Solids, vol. 89, article 104308. https://doi.org/10.1016/j.euromechsol.2021.104308.
  12. Smetankina, N., Kurennov, S., & Barakhov, K. (2023). Dynamic stresses in the adhesive joint. The Goland-Reissner model. In: Cioboată D. D. (eds) International Conference on Reliable Systems Engineering (ICoRSE) – 2023. ICoRSE 2023. Lecture Notes in Networks and Systems. Cham: Springer, vol. 762, pp. 456–468. https://doi.org/10.1007/978-3-031-40628-7_38.
  13. Ugrimov, S., Smetankina, N., Kravchenko, O., Yareshchenko, V., & Kruszka, L. (2023). A study of the dynamic response of materials and multilayer structures to shock loads. In: Altenbach H., et al. Advances in Mechanical and Power Engineering. CAMPE 2021. Lecture Notes in Mechanical Engineering. Cham: Springer, pp. 304–313. https://doi.org/10.1007/978-3-031-18487-1_31.
  14. Smetankina, N., Merkulova, A., Merkulov, D., Misura, S., & Misiura, Ie. (2023). Modelling thermal stresses in laminated aircraft elements of a complex form with account of heat sources. In: Cioboată D. D. (eds) International Conference on Reliable Systems Engineering (ICoRSE) – 2022. ICoRSE 2022. Lecture Notes in Networks and Systems. Cham: Springer, vol. 534, pp. 233–246. https://doi.org/10.1007/978-3-031-15944-2_22.
  15. Smetankina, N., Kravchenko, I., Merculov, V., Ivchenko, D., & Malykhina, A. (2020). Modelling of bird strike on an aircraft glazing. In book: Nechyporuk M., Pavlikov V., Kritskiy D. (eds) Integrated Computer Technologies in Mechanical Engineering. Advances in Intelligent Systems and Computing. Cham: Springer, vol. 1113, pp. 289–297. https://doi.org/10.1007/978-3-030-37618-5_25.
  16. Nikolayev, A. G. & Protsenko, V. S. (2011). Obobshchennyy metod Furye v prostranstvennykh zadachakh teorii uprugosti [Generalized Fourier method in spatial problems of the theory of elasticity]. Kharkiv: National Aerospace University “Kharkiv Aviation Institute”, 344 p. (in Russian).
  17. Nikolaev, A. G. & Tanchik, E. A. (2015). The first boundary-value problem of the elasticity theory for a cylinder with N cylindrical cavities. Numerical Analysis and Applications, vol. 8, pp. 148–158. https://doi.org/10.1134/S1995423915020068.
  18. Nikolaev, A. G. & Tanchik, E. A. (2016). Stresses in an elastic cylinder with cylindrical cavities forming a hexagonal structure. Journal of Applied Mechanics and Technical Physics, vol. 57, pp. 1141–1149. https://doi.org/10.1134/S0021894416060237.
  19. Nikolaev, A. G. & Tanchik, E. A. (2016). Model of the stress state of a unidirectional composite with cylindrical fibers forming a tetragonal structure. Mechanics of Composite Materials, vol. 52, pp. 177–188. https://doi.org/10.1007/s11029-016-9571-6.
  20. Nikolayev, A. G. & Orlov, Ye. M. (2012). Resheniye pervoy osesimmetrichnoy termouprugoy krayevoy zadachi dlya transversalno-izotropnogo poluprostranstva so sferoidalnoy polostyu [Solution of the first axisymmetric thermoelastic boundary value problem for a transversally isotropic half-space with a spheroidal cavity]. Problemy vychislitelnoy mekhaniki i prochnosti konstruktsiy – Problems of Computational Mechanics and Strength of Structures, iss. 20, pp. 253–259 (in Russian).
  21. Ukrayinets, N., Murahovska, O., & Prokhorova, O. (2021). Solving a one mixed problem in elasticity theory for half-space with a cylindrical cavity by the generalized Fourier method. Eastern-European Journal of Enterprise Technologies, vol. 2, no. 7 (110), pp. 48–57. https://doi.org/10.15587/1729-4061.2021.229428.
  22. Miroshnikov, V. Yu., Denysova, T. V., & Protsenko, V. S. (2019). Doslidzhennia pershoi osnovnoi zadachi teorii pruzhnosti dlia sharu z tsylindrychnoiu porozhnynoiu [Study of the first fundamental problem of the theory of elasticity for a layer with a cylindrical cavity]. Opir materialiv i teoriia sporudStrength of Materials and Theory of Structures, no. 103, pp. 208–218 (in Ukrainian). https://doi.org/10.32347/2410-2547.2019.103.208-218.
  23. Miroshnikov, V. Yu., Medvedeva, A. V., & Oleshkevich, S. V. (2019). Determination of the stress state of the layer with a cylindrical elastic inclusion. Materials Science Forum, vol. 968, pp. 413–420. https://doi.org/10.4028/www.scientific.net/MSF.968.413.
  24. Miroshnikov, V. Yu. (2019). Investigation of the stress state of a composite in the form of a layer and a half space with a longitudinal cylindrical cavity at stresses given on boundary surfaces. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 22, no. 4, pp. 24–31. https://doi.org/10.15407/pmach2019.04.024.
  25. Miroshnikov, V. Yu., Savin, O. B., Hrebennikov, M. M., & Demenko, V. F. (2023). Analysis of the stress state for a layer with two incut cylindrical supports. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 26, no. 1, pp. 15–22. https://doi.org/10.15407/pmach2023.01.015.
  26. Miroshnikov, V. Yu., Savin, O. B., Hrebennikov, M. M., & Pohrebniak, O. A. (2022). Analysis of the stress state of a layer with two cylindrical elastic inclusions and mixed boundary conditions. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 25, no. 2, pp. 22–29. https://doi.org/10.15407/pmach2022.02.022.
  27. Miroshnikov, V. Yu. (2019). Investigation of the stress strain state of the layer with a longitudinal cylindrical thick-walled tube and the displacements given at the boundaries of the layer. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 22, no. 2, pp. 44–52. https://doi.org/10.15407/pmach2019.02.044.
  28. Miroshnikov, V. (2023). Rotation of the layer with the cylindrical pipe around the rigid cylinder. In: Altenbach H., et al. Advances in Mechanical and Power Engineering. CAMPE 2021. Lecture Notes in Mechanical Engineering. Cham: Springer, pp. 314–322. https://doi.org/10.1007/978-3-031-18487-1_32.

 

Received 05 February 2025

Accepted 21 May 2025

Published 30 March 2025