Study of the Stress State of Solid Cylinders with Inhomogeneous Structure Under Various Boundary Conditions at the Ends

image_print
DOI https://doi.org/10.15407/pmach2025.02.061
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 28, no. 2, 2025 (June)
Pages 61-72
Cited by J. of Mech. Eng., 2025, vol. 28, no. 2, pp. 61-72

 

Authors

Oleksandr Ya. Grygorenko, S. P. Timoshenko Institute of Mechanics of National Academy of Science of Ukraine (3, Nesterova str., Kyiv, 03057, Ukraine), e-mail: ayagrigorenko1991@gmail.com, ORCID: 0000-0002-4109-2672

Liliia S. Rozhok, National Transport University (1, M. Omelianovycha-Pavlenka str., Kyiv, 01010, Ukraine), e-mail: teor_mex@ukr.net, ORCID: 0000-0002-7926-9074

Nataliia P. Boreiko, S. P. Timoshenko Institute of Mechanics of National Academy of Science of Ukraine (3, Nesterova str., Kyiv, 03057, Ukraine), e-mail: nataliya.petrivna@ukr.net, ORCID: 0000-0003-3697-9997

Lesia V. Kharytonova, S. P. Timoshenko Institute of Mechanics of National Academy of Science of Ukraine (3, Nesterova str., Kyiv, 03057, Ukraine), e-mail: kharytonova-lv@ukr.net, ORCID: 0000-0002-0108-6702

 

Abstract

Solving the problems of the theory of elasticity on the stress state of continuous-inhomogeneous bodies requires the improvement of existing and the development of new numerical-analytical methods. This is due to the need to fully take into account arbitrary dependencies of the mechanical properties of the material on the coordinates and nature of the applied load. The paper is devoted to the solution of the axisymmetric problem of the linear theory of elasticity on the equilibrium of the solid inhomogeneous cylinders of the finite length with the different boundary conditions at the ends. The polymeric continuous-inhomogeneous material with a gradient profile corresponding to the quadratic variants of change of the Young’s modulus along the radial coordinate is considered. The solution of the problem is based on the application of the method of spline-approximation of functions in the direction of the longitudinal coordinate and the numerical method of discrete orthogonalization along the radial coordinate. The boundary conditions at singular point r=0 of continuous-inhomogeneous solid cylinder are formulated. An analysis of the stress state of the solid cylinders depending on the variant of the change of elastic characteristics of the material and the different boundary conditions is carried out. It is shown that the greatest influence of the law of change of Young’s modulus on the stress state of cylinders is observed for circumferential stresses on the outer surface in the average length section for both methods of the ends fixing. In addition, the influence of the material occurs for both circumferential and radial stresses on the ends for short cylinders (l=6l0) with the rigidly fixed ends. The comparative analysis of the stress distribution for the different variants of the mechanical properties of the continuously inhomogeneous solid cylinder of the finite length is carried out. There are edge effects at the ends, which depend on the length of the cylinder with conditions of rigid fastening at the ends. The given results can be used in the strength calculations of the cylindrical elements of the modern structures.

 

Keywords: axisymmetric problem, stress state, solid cylinders, continuous-heterogeneous materials, numerical method.

 

Full text: Download in PDF

 

References

  1. Jin, G., Wang, Z., Liang, D., Wei, Z., Chang, B., & Zhou, Y. (2023). Modeling and dynamics characteristics analysis of six-bar rocking feeding mechanism with lubricated clearance joint. Archive of Applied Mechanics, vol. 93, pp. 2831–2854. https://doi.org/10.1007/s00419-023-02410-7.
  2. Mendil, F., Bechir, H. & Methia, M. (2024). Effect of nonhomogeneity on compression of solid circular cylinders made of functionally graded incompressible neo-Hookean materials. Meccanica, vol. 59, pp. 1625–1638. https://doi.org/10.1007/s11012-024-01852-9.
  3. Shaldyrvan, V. A., Sumtsov, A. A., & Soroka, V. A. (1999). Study of stress concentration in short hollow cylinders of transversely isotropic materials. International Applied Mechanics, vol. 35, iss. 7, pp. 678–683. https://doi.org/10.1007/BF02682205.
  4. Hu, W., Xu, T., Feng, J., Shi, L., Zhu, J., & Feng, J. (2024). Exact static axisymmetric solutions of thick functionally graded cylindrical shells with general boundary conditions. Mechanics of Advanced Materials and Structures, vol. 31, iss. 5, pp. 990–1005. https://doi.org/10.1080/15376494.2022.2129113.
  5. Mognhod Bezzie, Y. & Woldemichael, D. E. (2021). Effects of graded-index and Poisson’s ratio on elastic-solutions of a pressurized functionally graded material thick-walled cylinder. Forces in Mechanics, vol. 4, article 100032. https://doi.org/10.1016/j.finmec.2021.100032.
  6. Tokova, L.P. & Yasinskyi, A.V. (2013). Napruzhenyi stan bahatosharovoho neodnoridnoho tsylindra za rivnomirnoho stysku bichnoi poverkhni [Stress state of a multilayer inhomogeneous cylinder under uniform compression of the lateral surface]. Prykladni problemy mekhaniky i matematykyApplied Problems of Mechanics and Mathematics, iss. 11, pp. 101107 (in Ukrainian).
  7. Tokova, L. P. & Yasinskyy, А. V. (2018). Approximate solution of the one-dimensional problem of the theory of elasticity for an inhomogeneous solid cylinder. Journal of Mathematical Sciences, vol. 228, iss. 2, pp. 133–141. https://doi.org/10.1007/s10958-017-3611-1.
  8. Tokovyy, Yu. V. (2024). Integration of the equations of plane axisymmetric problems of the theory of elasticity and thermoelasticity for layered solid cylinders. Journal of Mathematical Sciences, vol. 282, iss. 5, pp. 769–779. https://doi.org/10.1007/s10958-024-07215-9.
  9. Revenko, V. P. (2010). Investigation of the stress-strain state of a finite cylinder under the action of compressive forces. Materials Science, vol. 46, iss. 3, pp. 330–335. https://doi.org/10.1007/s11003-010-9294-0.
  10. Chekurin, V. F. & Postolaki, L. I. (2020). Axially symmetric elasticity problems for the hollow cylinder with the stress-free ends. Analytical solving via a variational method of homogeneous solutions. Mathematical Modeling and Computing, vol. 7, no. 1, pp. 48–63. https://doi.org/10.23939/mmc2020.01.048.
  11. Sirsat, A. V. & Padhee, S. S. (2024). Analytic solution to isotropic axisymmetric cylinder under surface loadings problem through variational principle. Acta Mechanica, vol. 235, pp. 2013–2027. https://doi.org/10.1007/s00707-023-03825-7.
  12. Semenyuk, M. P., Trach, V. M., & Podvornyi, A. V. (2023). Stress-strain state of a thick-walled anisotropic cylindrical shell. International Applied Mechanics, vol. 59, iss. 1, pp. 79–89. https://doi.org/10.1007/s10778-023-01201-5.
  13. Daghia, F., Baranger, E., Tran, D.-T., & Pichon, P. (2020). A hierarchy of models for the design of composite pressure vessels. Composite Structures, vol. 235, article 111809. https://doi.org/10.1016/j.compstruct.2019.111809.
  14. Ganendra, B., Prabowo, A. R., Muttaqie, T., Adiputra, R., Ridwan, R., Fajri, A., Do, Q. T., Carvalho, H., & Baek, S. J. (2023). Thin-walled cylindrical shells in engineering designs and critical infrastructures: A systematic review based on the loading response. Curved and Layered Structures, vol. 10, iss. 1, article 20220202. https://doi.org/10.1515/cls-2022-0202.
  15. Pabyrivskyi, V. V., Pabyrivska, N. V., & Pukach, P. Ya. (2020). The study of mathematical models of the linear theory of elasticity by presenting the fundamental solution in harmonic potentials. Mathematical Modeling and Computing, vol. 7, no. 2, pp. 259–268. https://doi.org/10.23939/mmc2020.02.259.
  16. Senapati, A. & Jena, S. R. (2022). A computational scheme for fifth order boundary value problems. International Journal of Information Technology, vol. 14, pp. 1397–1404. https://doi.org/10.1007/s41870-022-00871-7.
  17. Ihnatchenko, M. S., Kudin, O. V., & Hnezdovskyi, O. V. (2020). Obiektno-oriientovana realizatsiia biblioteky skinchenno-elementnoho analizu movoiu prohramuvannia Python [Object-oriented implementation of the finite element analysis library in the Python programming language]. Visnyk Zaporizkoho natsionalnoho universytetu. Fizyko-matematychni naukyComputer Science and Applied Mathematics, no. 1, pp. 138–147 (in Ukrainian). https://doi.org/10.26661/2413-6549-2020-1-18.
  18. Lugovoi, P. Z., Skosarenko, Yu. V., Orlenko, S. P., & Shugailo, A. P. (2019). Application of the spline-collocation method to solve problems of statics and dynamics for multilayer cylindrical shells with design and manufacturing features. International Applied Mechanics, vol. 55, iss. 5, pp. 524–533. https://doi.org/10.1007/s10778-019-00974-y.
  19. Shafei, E., Faroughi, S., & Reali, A. (2024). An isogeometric FSDT approach for the study of nonlinear vibrations in truncated viscoelastic conical shells. Engineering with Computers, vol. 40, pp. 1637–1651. https://doi.org/10.1007/s00366-023-01885-w.
  20. Grigorenko, A. Y. & Yaremchenko, S. N. (2019) Three-dimensional analysis of the stress-strain state of inhomogeneous hollow cylinders using various approaches. International Applied Mechanics, vol. 55, no. 5, pp. 487–494. https://doi.org/10.1007/s10778-019-00970-2.
  21. Grigorenko, Ya. M., Grigorenko, А. Ya., & Rozhok, L. S. (2006) Solving the stress problem for solid cylinders with different end conditions. International Applied Mechanics, vol. 42, iss. 6, pp. 629–635. https://doi.org/10.1007/s10778-006-0130-z.
  22. Saranen, J. & Vainikko, G. (2002). Spline Approximation Methods. In: Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg, pp. 401–440. https://doi.org/10.1007/978-3-662-04796-5_13.
  23. Grigorenko, Ya. M., Grigorenko, А. Ya., & Rozhok, L. S. (2022). Stress state of non-thin nearly circular cylindrical shells made of continuously inhomogeneous materials. International Applied Mechanics, vol. 58, iss. 4, pp. 381–388. https://doi.org/10.1007/s10778-022-01163-0.

 

Received 04 February 2025

Accepted 24 February 2025

Published 30 June 2025