DOI | |
Journal | Journal of Mechanical Engineering – Problemy Mashynobuduvannia |
Publisher | Anatolii Pidhornyi Institute of Power Machines and Systems of National Academy of Science of Ukraine |
ISSN | 2709-2984 (Print), 2709-2992 (Online) |
Issue | Vol. 28, no. 3, 2025 (September) |
Pages | 34-41 |
Cited by | J. of Mech. Eng., 2025, vol. 28, no. 3, pp. 34-41 |
Author
Bohdan K. Shestak, National Aerospace University “Kharkiv Aviation Institute” (17, Vadyma Manka str., Kharkiv, 61070, Ukraine), e-mail: Bogdan.Shestak@gmail.com, ORCID: https://orcid.org/0000-0000-0000-0000
Abstract
The reliability of a high-power turbogenerator largely depends on its cooling system. The trouble-free and efficient operation of this system, in particular the gas cooler, is a problem that has not been fully resolved as of now. A modernized design of a gas cooler for a 325 MW turbogenerator, featuring high-finned bimetallic tubes, is proposed in the paper. To substantiate the efficiency of such a design and determine the heat transfer reserve of the gas cooler, its thermal state was calculated. The obtained results showed that the water overheating in the gas cooler is 5 °C. At the same time, one section of the gas cooler provides heat loss removal of 1266 kW at a hydrogen flow rate of 6.66 m3/s and a cooling water flow rate of 200 m3/s, which meets the requirements for this gas cooler.
Keywords: turbogenerator, gas cooler, finned tubes, thermal calculation, criterion equations.
Full text: Download in PDF
References
- Kerszenbaum, I. & Klempner, G. (2018). Generator design and construction. In: Kerszenbaum, I. & Klempner, G. (eds). Handbook of Large Turbo-Generator Operation and Maintenance. Chapter 2, pp. 53–168. https://doi.org/10.1002/9781119390718.ch2.
- Miction, M., Calverley, S. D., Clark, R. E., Howe, D., Chambers, J. D. A., Sykes, P. A., Dickinson, P. G., Mc Clelland, M., Johnstone, G., Quinn, R., & Morris, G. (2007). Modelling and testing of a turbo-generator system for exhaust gas energy recovery. Proceedings of IEEE Vehicle Power and Propulsion Conference (Arlington, TX, USA), pp. 544–550. https://doi.org/10.1109/VPPC.2007.4544184.
- Miction, M., Calverley, S. D., Clark, R. E., Howe, D., McClelland, M., & Sykes, P. (2006). Switched reluctance turbo-generator for exhaust gas energy recovery. Proceedings of 12th International Power Electronics and Motion Control Conference (Portoroz, Slovenia), pp. 1801–1807. https://doi.org/10.1109/EPEPEMC.2006.4778667.
- (1991). IEC 60034-6:1991. Rotating electrical machines – Part 6: Methods of cooling (IC Code). International Standard, 39 p.
- Yaichenia, V. V. (2018). Avtomatyzatsiia systemy okholodzhennia turboheneratora TVF-125-2U3 [Automation of the cooling system of the turbogenerator TVF-125-2U3]: master’s thesis: 151 Automation and computer-integrated technologies / National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 89 p. (in Ukrainian). https://ela.kpi.ua/handle/123456789/28999.
- (2017). EN 60034-1:2010; EN 60034-1:2010/АС:2010 Rotating electrical machines – Part 1: Rating and performance. International Standard.
- Minko, A. N. (2012). Optimal’naya geometriya i massogabaritnyye parametry konstruktsii korpusa statora turbogeneratorov s vozdushnoy sistemoy okhlazhdeniya [Optimal geometry and mass-dimensional parameters of the stator housing design of turbogenerators with an air cooling system]. Energosberezheniye. Energetika. Energoaudit – Energy saving. Power engineering. Energy audit, no. 01 (95), pp. 33–39 (in Russian).
- Alexopoulos, C., Aljolani, O., Heberle, F., Roumpedakis, T. C., Brüggemann, D., & Karellas, S. (2020). Design evaluation for a finned-tube CO2 gas cooler in residential applications. Energies, vol. 13, iss. 10, article 2428. https://doi.org/10.3390/en13102428.
- Chai, L., Tsamos, K. M., & Tassou, S. A. (2020). Modelling and evaluation of the thermohydraulic performance of finned-tube supercritical carbon dioxide gas coolers. Energies, vol. 13, iss. 5, article 1031. https://doi.org/10.3390/en13051031.
- Zhang, X., Ge, Y., & Sun, J. (2020). CFD performance analysis of finned-tube CO2 gas coolers with various inlet air flow patterns. Energy and Built Environment, vol. 1, iss. 3, pp. 233–241. https://doi.org/10.1016/j.enbenv.2020.02.004.
- Wang, S., He, Y., Tuo, H., Cao, F., & Xing, Z. (2013). Effect of heat transfer area and refrigerant mass flux in a gas cooler on heating performance of air-source transcritical CO2 heat pump water heater system. Energy and Buildings, vol. 67, pp. 1–10. https://doi.org/10.1016/j.enbuild.2013.07.078.
- Taher, M. & Evans, B. F. (2020). Using a cubic polynomial temperature-entropy constant efficiency path for centrifugal compressor polytropic performance evaluation. Назва журналу, номер, сторінки. http://dx.doi.org/10.13140/RG.2.2.23470.54083/1.
- Evans, B. F. & Huble, S. (2017). Centrifugal compressor performance: Making enlightened analysis decisions. Proceedings of the 46th Turbomachinery Symposium (Houston, TX, USA, 11–14 December 2017), 55 p. https://core.ac.uk/reader/187128036.
- Khoshvaght-Aliabadi, M., Ghodrati, P., Rashidi, M. M., & Kang, Y. T. (2024). Structural analysis and optimization of flattened tube gas cooler for transcritical CO2 heat pump systems. Energy, vol. 307, article 132588. https://doi.org/10.1016/j.energy.2024.132588.
- Kuzmin, V. V., Shevchenko, V. V., & Minko, A. N. (2011). Optimizatsiya massy i razmerov elementov neaktivnoy zony turbogeneratorov s vozdushnoy sistemoy okhlazhdeniya [Optimization of mass and dimensions of elements of the inactive zone of turbogenerators with an air-cooled system]. Vestnik KrNU imeni Mikhaila Ostrogradskogo – Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, iss. 6/2011 (71), part 1, pp. 100–104 (in Russian).
- Hattori, K., Ide, K., Goto, F., Semba, A., & Watanabe, T. (2002). Sophisticated design of turbine generator with inner cooler ventilation system. Hitachi Review, vol. 51, no. 5, pp. 148–152.
- Ge, Y. T. & Cropper, R. T. (2009). Simulation and performance evaluation of finned-tube CO2 gas coolers for refrigeration systems. Applied Thermal Engineering, vol. 29, iss. 5–6, pp. 957–965. https://doi.org/10.1016/j.applthermaleng.2008.05.013.
- Zhang, X. & Ge, Y. T. (2021). The effect of heat conduction through fins on the performance of finned-tube CO2 supercritical gas coolers. International Journal of Heat and Mass Transfer, vol. 181, article 121908. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121908.
- Jadhav, N. P., Deshmukh, S., & Lele, M. M. (2012). Numerical simulation of fin and tube gas cooler for transcritical CO2 air conditioning system. International Journal of Engineering Research & Technology (IJERT), vol. 1, iss. 10, 8 p.
- Maiorino, A., Aprea, C., & Del Duca, M. G. (2021). A flexible top-down numerical modeling of an air-cooled finned-tube CO2 trans-critical gas cooler. Energies, vol. 14, iss. 22, article 7607. https://doi.org/10.3390/en14227607.
- Chen, Y. & Lundqvist, P. (2006). Analysis of supercritical carbon dioxide heat exchangers in cooling process. Proceedings of International Refrigeration and Air Conditioning Conference, paper 765.
- Anderson, D., Tannehill, J. C., Pletcher, R. H., Munipalli, R., & Shankar, V. (2020). Computational Fluid Mechanics and Heat Transfer. 4th Edition. CRC Press, 974 p. https://doi.org/10.1201/9781351124027.
Received 25 June 2025
Accepted 20 August 2025
Published 30 September 2025