Enhancing the Efficiency of the Turbogenerator Cooling System Through the Use of Finned Tubes in the Gas Cooler

image_print
DOI
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 28, no. 3, 2025 (September)
Pages 34-41
Cited by J. of Mech. Eng., 2025, vol. 28, no. 3, pp. 34-41

 

Author

Bohdan K. Shestak, National Aerospace University “Kharkiv Aviation Institute” (17, Vadyma Manka str., Kharkiv, 61070, Ukraine), e-mail: Bogdan.Shestak@gmail.com, ORCID: https://orcid.org/0000-0000-0000-0000

 

Abstract

The reliability of a high-power turbogenerator largely depends on its cooling system. The trouble-free and efficient operation of this system, in particular the gas cooler, is a problem that has not been fully resolved as of now. A modernized design of a gas cooler for a 325 MW turbogenerator, featuring high-finned bimetallic tubes, is proposed in the paper. To substantiate the efficiency of such a design and determine the heat transfer reserve of the gas cooler, its thermal state was calculated. The obtained results showed that the water overheating in the gas cooler is 5 °C. At the same time, one section of the gas cooler provides heat loss removal of 1266 kW at a hydrogen flow rate of 6.66 m3/s and a cooling water flow rate of 200 m3/s, which meets the requirements for this gas cooler.

 

Keywords: turbogenerator, gas cooler, finned tubes, thermal calculation, criterion equations.

 

Full text: Download in PDF

 

References

  1. Kerszenbaum, I. & Klempner, G. (2018). Generator design and construction. In: Kerszenbaum, I. & Klempner, G. (eds). Handbook of Large Turbo-Generator Operation and Maintenance. Chapter 2, pp. 53–168. https://doi.org/10.1002/9781119390718.ch2.
  2. Miction, M., Calverley, S. D., Clark, R. E., Howe, D., Chambers, J. D. A., Sykes, P. A., Dickinson, P. G., Mc Clelland, M., Johnstone, G., Quinn, R., & Morris, G. (2007). Modelling and testing of a turbo-generator system for exhaust gas energy recovery. Proceedings of IEEE Vehicle Power and Propulsion Conference (Arlington, TX, USA), pp. 544–550. https://doi.org/10.1109/VPPC.2007.4544184.
  3. Miction, M., Calverley, S. D., Clark, R. E., Howe, D., McClelland, M., & Sykes, P. (2006). Switched reluctance turbo-generator for exhaust gas energy recovery. Proceedings of 12th International Power Electronics and Motion Control Conference (Portoroz, Slovenia), pp. 1801–1807. https://doi.org/10.1109/EPEPEMC.2006.4778667.
  4. (1991). IEC 60034-6:1991. Rotating electrical machines – Part 6: Methods of cooling (IC Code). International Standard, 39 p.
  5. Yaichenia, V. V. (2018). Avtomatyzatsiia systemy okholodzhennia turboheneratora TVF-125-2U3 [Automation of the cooling system of the turbogenerator TVF-125-2U3]: master’s thesis: 151 Automation and computer-integrated technologies / National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 89 p. (in Ukrainian). https://ela.kpi.ua/handle/123456789/28999.
  6. (2017). EN 60034-1:2010; EN 60034-1:2010/АС:2010 Rotating electrical machines – Part 1: Rating and performance. International Standard.
  7. Minko, A. N. (2012). Optimal’naya geometriya i massogabaritnyye parametry konstruktsii korpusa statora turbogeneratorov s vozdushnoy sistemoy okhlazhdeniya [Optimal geometry and mass-dimensional parameters of the stator housing design of turbogenerators with an air cooling system]. Energosberezheniye. Energetika. EnergoauditEnergy saving. Power engineering. Energy audit, no. 01 (95), pp. 33–39 (in Russian).
  8. Alexopoulos, C., Aljolani, O., Heberle, F., Roumpedakis, T. C., Brüggemann, D., & Karellas, S. (2020). Design evaluation for a finned-tube CO2 gas cooler in residential applications. Energies, vol. 13, iss. 10, article 2428. https://doi.org/10.3390/en13102428.
  9. Chai, L., Tsamos, K. M., & Tassou, S. A. (2020). Modelling and evaluation of the thermohydraulic performance of finned-tube supercritical carbon dioxide gas coolers. Energies, vol. 13, iss. 5, article 1031. https://doi.org/10.3390/en13051031.
  10. Zhang, X., Ge, Y., & Sun, J. (2020). CFD performance analysis of finned-tube CO2 gas coolers with various inlet air flow patterns. Energy and Built Environment, vol. 1, iss. 3, pp. 233–241. https://doi.org/10.1016/j.enbenv.2020.02.004.
  11. Wang, S., He, Y., Tuo, H., Cao, F., & Xing, Z. (2013). Effect of heat transfer area and refrigerant mass flux in a gas cooler on heating performance of air-source transcritical CO2 heat pump water heater system. Energy and Buildings, vol. 67, pp. 1–10. https://doi.org/10.1016/j.enbuild.2013.07.078.
  12. Taher, M. & Evans, B. F. (2020). Using a cubic polynomial temperature-entropy constant efficiency path for centrifugal compressor polytropic performance evaluation. Назва журналу, номер, сторінки. http://dx.doi.org/10.13140/RG.2.2.23470.54083/1.
  13. Evans, B. F. & Huble, S. (2017). Centrifugal compressor performance: Making enlightened analysis decisions. Proceedings of the 46th Turbomachinery Symposium (Houston, TX, USA, 11–14 December 2017), 55 p. https://core.ac.uk/reader/187128036.
  14. Khoshvaght-Aliabadi, M., Ghodrati, P., Rashidi, M. M., & Kang, Y. T. (2024). Structural analysis and optimization of flattened tube gas cooler for transcritical CO2 heat pump systems. Energy, vol. 307, article 132588. https://doi.org/10.1016/j.energy.2024.132588.
  15. Kuzmin, V. V., Shevchenko, V. V., & Minko, A. N. (2011). Optimizatsiya massy i razmerov elementov neaktivnoy zony turbogeneratorov s vozdushnoy sistemoy okhlazhdeniya [Optimization of mass and dimensions of elements of the inactive zone of turbogenerators with an air-cooled system]. Vestnik KrNU imeni Mikhaila Ostrogradskogo – Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, iss. 6/2011 (71), part 1, pp. 100–104 (in Russian).
  16. Hattori, K., Ide, K., Goto, F., Semba, A., & Watanabe, T. (2002). Sophisticated design of turbine generator with inner cooler ventilation system. Hitachi Review, vol. 51, no. 5, pp. 148–152.
  17. Ge, Y. T. & Cropper, R. T. (2009). Simulation and performance evaluation of finned-tube CO2 gas coolers for refrigeration systems. Applied Thermal Engineering, vol. 29, iss. 5–6, pp. 957–965. https://doi.org/10.1016/j.applthermaleng.2008.05.013.
  18. Zhang, X. & Ge, Y. T. (2021). The effect of heat conduction through fins on the performance of finned-tube CO2 supercritical gas coolers. International Journal of Heat and Mass Transfer, vol. 181, article 121908. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121908.
  19. Jadhav, N. P., Deshmukh, S., & Lele, M. M. (2012). Numerical simulation of fin and tube gas cooler for transcritical CO2 air conditioning system. International Journal of Engineering Research & Technology (IJERT), vol. 1, iss. 10, 8 p.
  20. Maiorino, A., Aprea, C., & Del Duca, M. G. (2021). A flexible top-down numerical modeling of an air-cooled finned-tube CO2 trans-critical gas cooler. Energies, vol. 14, iss. 22, article 7607. https://doi.org/10.3390/en14227607.
  21. Chen, Y. & Lundqvist, P. (2006). Analysis of supercritical carbon dioxide heat exchangers in cooling process. Proceedings of International Refrigeration and Air Conditioning Conference, paper 765.
  22. Anderson, D., Tannehill, J. C., Pletcher, R. H., Munipalli, R., & Shankar, V. (2020). Computational Fluid Mechanics and Heat Transfer. 4th Edition. CRC Press, 974 p. https://doi.org/10.1201/9781351124027.

 

Received 25 June 2025

Accepted 20 August 2025

Published 30 September 2025