DOI | https://doi.org/10.15407/pmach2017.01.052 |
Journal | Journal of Mechanical Engineering – Problemy Mashynobuduvannia |
Publisher | A. Podgorny Institute for Mechanical Engineering Problems National Academy of Science of Ukraine |
ISSN | 0131-2928 (Print), 2411-0779 (Online) |
Issue | Vol. 20, no. 1, 2017 (March) |
Pages | 52-61 |
Cited by | J. of Mech. Eng., 2017, vol. 20, no. 1, pp. 52-61 |
Authors
O. M. Lytvyn, Ukrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine), e-mail: academ_mail@ukr.net
I. S. Tomanova, Ukrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine)
Abstract
The use of 5th degree splines on a triangular grid of nodes for solving the bending problem for a rigidly clamped uniformly loaded plate is considered. The results of the computational experiment are compared with the known scientific results.
Keywords: 5th degree splines, biharmonic problem, rectangular plate, uniformly distributed load
References
- Sergienko, I. V., Lytvyn, O. N., Lytvyn, O. O., & Denisova, O. I. (2014). Javnye formuly dlja ynterpoljacyonnyx splajnov 5-j stepeny na treuhol’nyke [Explicit formulas for interpolation splines of 5th degree on a triangle]. Cybernetics and Systems Analysis, vol. 50, no. 5, pp. 17–33. https://doi.org/10.1007/s10559-014-9657-x
- Zlamal, M., Zenesek, A., Kolar, V., & Kratochvil, J. (1971). Mathematical aspect of the finite element method. Technical physical and mathematical principles of the finite element method, vol. 1, pp. 15–39.
- Timoshenko, S. P. & Voynovskiy-Kriger, S. (1966). Plastyny i obolochki [Plates and shells]. Moscow: Nauka, 635 p.
- Imrak, C. E. & Gerdemeli, I. (2007). The problem of isotropic rectangular plate with four clamped edges. Indian Academy of Sciences SADHANA, vol. 32, pp. 181–186. https://doi.org/10.1007/s12046-007-0016-8
Received 19 September 2016
Published 30 March 2017