CONSTRUCTION AND RESEARCH INTO THE OPERATOR OF INTERLINEATION OF THE FUNCTIONS OF TWO VARIABLES WITH THE PRESERVATION OF THE CLASS OF DIFFERENTIABILITY USING THE TRACES OF THEIR DERIVATIVES TO A FIXED ORDER ON THE LINE SPECIFIED

image_print

J. of Mech. Eng., 2016, vol. 19, no. 2, pp. 50-57

DOI: https://doi.org/10.15407/pmach2016.02.050

Journal Journal of Mechanical Engineering 
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 19, no. 2, 2016 (June)
Pages 50–57

 

Authors

I. V. Serhiienko, V. M. Glushkov Institute of Cybernetics of the NASU (40, Academician Glushkov Ave., Kyiv, 03187, Ukraine)

O. M. Lytvyn, Ukrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine), e-mail: academ_mail@ukr.net

O. O. Lytvyn, Ukrainian Engineering Pedagogics Academy (16, Universitetskaya St., Kharkiv, 61003, Ukraine)

O. V. Tkachenko, Zaporozhye Machine-Building Design Bureau Progress State Enterprise named after Academician A. G. Ivchenko (2, Ivanova Str., 69068, Zaporozhye, Ukraine), e-mail: avt2007@outlook.com

O. L. Hrytsai, Zaporozhye Machine-Building Design Bureau Progress State Enterprise named after Academician A. G. Ivchenko (2, Ivanova Str., 69068, Zaporozhye, Ukraine), e-mail: avt2007@outlook.com

 

Abstract

This article proposes and investigates methods of constructing operators for restoring the differentiable functions of two variables in the neighborhood of a smooth line G: w(x, y) = 0 w Î Cr(R2) that preserve the class of differentiability Cr (R2). To construct the specified operators, these methods use the traces of the function being restored and its partial derivatives with respect to one variable to a specified order on the line specified.

 

Keywords: preservation of the class of differentiability, traces of a function, traces of derivatives on a line, Taylor polynomial with respect to one variable

 

References

  1. Sergienko, I. V., Lytvyn O. M., Lytvyn, O. O., Tkachenko, O. V., & Gritsay, O. L. (2014). Vidnovlennya funktsiy dvoh zminnyh iz zberezhennyam klasu Cr(R2) za dopomogoyu ih slidiv ta slidiv ih pohidnyh do fiksovanogo poryadku na zadaniy linii. Dop. NAN Ukrainy, no. 2, pp. 50–55 (in Ukrainian).
  2. Sergienko, I. V. & Dejneka, V. S. (2013). Sistemnyi analiz. Kyiv: Nauk. dumka, 500 p. (in Russian).
  3. Sergienko, I. V., Zadiraka, V. K., & Lytvyn O. M. (2012). Elementy zagalnoi teorii optymalnyh algorytmiv i sumizhni pytannya. Kyiv: Nauk. dumka, 404 p.
  4. Tihonov, A. N. & Samarskiy, A. A. (1966). Uravneniya matematicheskoi fiziki. Moscow: Nauka, 724 p. (in Russian).
  5. Kvasov, B. I. (2006). Metody izogeometricheskoi approksimatsii splaynami. Moscow: Fizmatlit, 360 p. (in Russian).
  6. Shilov, G. E. (1965). Matematicheskiy analiz. Vtoroy spets. kurs. Moscow: Nauka, 327 p. (in Russian).
  7. Nikolskiy, S. M. (1969). Priblizhenie funktsiy mnogih peremennyh i teoremy vlozheniya. Moscow: Nauka, 480 p. (in Russian).
  8. Besov, O. V., Ilin, V. P., & Nikolskiy, S. M. (1975). Integralnye predstavleniya funktsiy i teoremy vlozheniya. Moscow: Nauka, 480 p. (in Russian).
  9. Stein, I. (1973). Singularnye integraly I differentsialnye svoistva funktsiy. Moscow: Mir, 342 p. (in Russian).
  10. Vladimirov, V. S. (1979). Obobschennye funktsii v matematicheskoy fizike. Moscow: Nauka, 318 p. (in Russian).
  11. Hermander, L. (1986). Differentsialnye operatory s postoyannymi koeffitsientami. Moscow: Mir, 455 p. (in Russian).
  12. Vinogradov, I. M. (ed). (1984). Matematicheskaya entsiklopediya in 5 vols. Moscow: Sov. entsiklopediya, vol. 5, 1215 p. (in Russian).
  13. Lytvyn, O. M. (1984). Interpolyatsiya funktsiy ta ih normalnyh pohidnyh na gladkyh liniyah v Rn. Dop. АN URSR, no. 7, pp. 15–19 (in Ukrainian).
  14. Lytvyn, O. M. (1991). Tochnyi rozvyazok zadachi Koshi dlya rivnyannya . Dop. АN URSR, no. 3, pp. 12–17 (in Ukrainian).
  15. Lytvyn, O. M. & Gulik, L. I. (2011). Interfletatsiya funktsiy pry rozvyazuvanni tryvymirnoi zadachi teploprovidnosti: monografiya. Kyiv: Nauk. dumka, 210 p. (in Ukrainian).
  16. Lytvyn, O. M. (2002). Interlinatsiya funktsiy ta deyaki ii zastosuvannya. Kharkiv: Osnova, 544 p. (in Ukrainian).
  17. Lytvyn, O. M. (1993). Interlinatsiya funktsiy. Kharkiv: Osnova, 235 p. (in Ukrainian).
  18. Lytvyn, O. M. (2005). Metody obchislen. Dodatkovi rozdily. Kyiv: Nauk. dumka, 331 p. (in Ukrainian).
  19. Sergienko, I. V., Lytvyn, O. M., & Pershina, U. I. (2008). Matematychne modelyuvannya v kompyuterniy tomografii z vykorystannyam interfletatsii funktsiy: monografiya. Kharkiv, 160 p. (in Ukrainian).
  20. Sergienko, I. V., Zadiraka, V. K., Lytvyn, O. M., Melnikova, S. S., Nechuyviter, O. P. (2011). Optymalni algorytmy obchislennya integraliv vid shvydkoostsiluuchyh funktsiy ta ih zastosuvannya: in 2 vols. Vol. 1. Algorytmy. Kyiv: Nauk. dumka, 447 p. (in Ukrainian).
  21. Sergienko, I. V., Zadiraka, V. K., Lytvyn, O. M., Melnikova, S. S., Nechuyviter, O. P. (2011). Optymalni algorytmy obchislennya integraliv vid shvydkoostsiluuchyh funktsiy ta ih zastosuvannya: in 2 vols. Vol. 2. Zastosuvannya. Kyiv: Nauk. dumka, 348 p. (in Ukrainian).

 

Received 03 March 2016