TO THE SOLUTION OF NON-STATIONARY NON-LINEAR BOUNDARY-VALUE INVERSE HEAT CONDUCTION PROBLEMS

image_print

J. of Mech. Eng., 2017, vol. 20, no. 4, pp. 15-23

DOI:   https://doi.org/10.15407/pmach2017.04.015

Journal Journal of Mechanical Engineering
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 4, 2017 (December)
Pages 15–23

 

Authors

Yu. M. Matsevityy, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail:  matsevit@ipmach.kharkov.ua

A. O. Kostikov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), ORCID: 0000-0001-6076-1942

N. A. Safonov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine)

V. V. Ganchin, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine)

 

Abstract

In order to solve the non-linear boundary inverse heat conduction problem, A.N. Tikhonov’s regularization method is used, using an effective algorithm for finding a regularization parameter. The desired heat flux at the boundary is approximated by the time coordinate by Schönberg splines. The method of influence functions is used, for which the non-linear problem is reduced to a sequence of linear inverse problems.

 

Keywords: inverse boundary value heat conduction problem, heat flux, A. N. Tikhonov’s regularization method, functional, stabilizer, regularization parameter, identification, approximation, Schoenberg splines

 

References

  1. Beck, J., Blakuell, B., & Sent-Kler (ml.), Ch. (1989). Nekotorye obratnye zadachi teploprovodnosti. Moscow: Mir, 312 p.
  2. Matsevitiy, Yu. M. (2002–2003). Оbratnye zadachi teploprovodnosti: Vol. 1. Metodologiya. Vol. 2. Prilozheniya. Kiyev: Nauk. dumka.
  3. Kozdoba, L. A. & Krukovskiy, P. G. (1982). Меtody resheniya obratnykh zadach teploperenosa. Kiyev: Nauk. dumka, 360 p.
  4. Alifanov, O. M., Artuchin, E. A., & Rumyantsev, S. V. (1988). Ekstremalnye меtody resheniya nekorrektnykh zadach. Moscow: Nauka, 288 p.
  5. Tikhonov, A. N. & Arsenin, V. Ja. (1979). Metody resheniya nekorrektnyh zadach. Moscow: Nauka, 288 p.
  6. Matsevitiy, Yu. M. & Slesarenko, A. P. (2014). Nekorrektnye mnogoparametricheskie zadachi teploprovodnosti i regionalno-strukturnaya regulyarizatsiya ikh resheniy. Kiyev: Nauk. dumka, 292 p.
  7. Shlykov, Yu .P., Ganin, E. A., & Tsаrevskiy, S. N. (1977). Kontaktnoe termicheskoe soprotivlenie. Moscow: Energia, 328 p.
  8. Krukovskiy, P. G. Оbratnye zadachi teploperenosa (оbschii inzhenernyi podkhod). Kiyev, In-t tehn. teplofiziki NAN Ukrainy, 224 p.
  9. Jakovleva, R. A., Fomin, S. L., Safonov, N. A., & Bezuglyi, A. M. (2008). Novye оgnezaschitnye pokrytiya pо мetallu i identifikatsiya ikh teplofizicheskikh svoystv. Nauk. visnyk budivnytstva, iss. 48, pp. 250-268.
  10. Matsevitiy, Yu. M., Slesarenko, A. P., & Ganchin, V. V. (1999). Rеgionalno-analiticheskoe моdelirovanie i identifikatsiya teplovykh potokov s ispol‘zovaniem меtoda regulyarizatsii A. N. Tikhonova. Journal of Mechanical Engineering, vol. 2, no. 1–2. pp. 34–42.
  11. Matsevityy, Yu. M., Safonov, N. A., & Ganchin, V. V. (2016). To the solution of nonlinear inverse boundary value heat conduction problems. Journal of Mechanical Engineering, vol. 19, no. 1. pp. 28–36. https://doi.org/10.15407/pmach2016.01.028
  12. Graham, N. Y. (1983). Smoothing with Periodic Cubic Splines. Bell System Tech. J., vol. 62, pp. 101–110. https://doi.org/10.1002/j.1538-7305.1983.tb04381.x
  13. Reinsch, C. H. J. (1967). Smoothing by Spline Function. Numerische Mathematik, vol. 10, iss. 3, pp. 177–183. https://doi.org/10.1007/BF02162161
  14. Kartashov, E. М. & Lubov, B. Ya. (1974). Analiticheskie мetody resheniya krayevykh zadach uravneniya teploprovodnosti v oblasti s dvizhuschimisya granizami: Obzor. Izv. АN SSSR. Energetika i transport – Proceedings of the Russian Academy of Sciences. Power Engineering, no. 6, pp. 83–111.
  15. Kartashov, E. M. (2001). Analiticheskie мetody v teorii teploprovodnosti tverdykh tel. Moscow: Vysshaya shkola, 553 p.
  16. Tikhonov, A. N. & Samarskii, A. A. (1999). Uravneniya matematicheskoi fiziki. Ucheb. posobie. Moscow: Izd-vo MGU, 799 p.

 

Received 18 October 2017