TO THE SOLUTION OF NON-STATIONARY NON-LINEAR BOUNDARY-VALUE INVERSE HEAT CONDUCTION PROBLEMS

image_print

J. of Mech. Eng., 2017, vol. 20, no. 4, pp. 15-23

Journal Journal of Mechanical Engineering
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 4, 2017 (December)
Pages 15–23

 

Authors

Yu. M. Matsevityy, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail:  matsevit@ipmach.kharkov.ua

A. O. Kostikov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine)

N. A. Safonov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine)

V. V. Ganchin, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine)

 

Abstract

In order to solve the non-linear boundary inverse heat conduction problem, A.N. Tikhonov’s regularization method is used, using an effective algorithm for finding a regularization parameter. The desired heat flux at the boundary is approximated by the time coordinate by Schönberg splines. The method of influence functions is used, for which the non-linear problem is reduced to a sequence of linear inverse problems.

 

Keywords: inverse boundary value heat conduction problem, heat flux, A. N. Tikhonov’s regularization method, functional, stabilizer, regularization parameter, identification, approximation, Schoenberg splines

 

References

  1. Beck, J., Blakuell, B., & Sent-Kler (ml.), Ch. (1989). Nekotorye obratnye zadachi teploprovodnosti. Moscow, Mir, 312 p.
  2. Маtsevitiy, Ju. М. (2002–2003). Оbratnye zadachi teploprovodnosti: Vol. 1. Меtodologiya. Vol. 2. Prilozheniya. Kyiv, Nauk. dumka.
  3. Коzdoba, L. А., & Кrukovskiy, P. G. (1982). Меtody resheniya obratnykh zadach teploperenosa. Kyiv, Nauk. dumka, 360 p.
  4. Аlifanov, О. М., Аrtuchin, Е. А., & Rumyantsev, S. V. (1988). Ekstremalnye меtody resheniya nekorrektnykh zadach. Moscow, Nauka, 288 p.
  5. Тikhonov, А. N., & Аrsenin, V. Ja. (1979). Меtody resheniya nekorrektnyh zadach. Moscow, Nauka, 288 p.
  6. Маtsevitiy, Ju. М., & Slesarenko, А. P. (2014). Nekorrektnye mnogoparametricheskie zadachi teploprovodnosti i regionalno-strukturnaya regulyarizatsiya ikh resheniy. Kyiv, Nauk. dumka, 292 p.
  7. Shlykov, Ju .P., Ganin, E. А., & Tsаrevskiy, S. N. (1977). Kontaktnoe termicheskoe soprotivlenie. Moscow, Energia, 328 p.
  8. Кrukovskiy, P. G. Оbratnye zadachi teploperenosa (оbschii inzhenernyi podkhod). Kyiv, In-t tehn. Тeplofiziki NAN Ukrainy, 224 p.
  9. Jakovleva, R. А., Fomin, S. L., Safonov, N. A., & Bezuglyi, A. M. (2008). Novye оgnezaschitnye pokrytiya pо мetallu i identifikatsiya ikh teplofizicheskikh svoystv. Nauk. visnyk budivnytstva, iss. 48, pp. 250-268.
  10. Маtsevitiy, Ju. М., Slesarenko, А. P., & Ganchin, V. V. (1999). Rеgionalno-analiticheskoe моdelirovanie i identifikatsiya teplovykh potokov s ispol‘zovaniem меtoda regulyarizatsii А. N. Тikhonova. Journal of Mechanical Engineering, vol. 2, no. 1–2. pp. 34–42.
  11. Маtsevitiy, Ju. М., Slesarenko, А. P., & Ganchin, V. V. (2016). K resheniyu nelineynykh оbratnykh granichnykh zadach teploprovodnosti. Journal of Mechanical Engineering, vol. 19, no. 1. pp. 28–36.
  12. Graham, N. Y. (1983). Smoothing with Periodic Cubic Splines. Bell System Tech. J., vol. 62, pp. 101–110.
  13. Reinsch, C. H. J. (1967). Smoothing by Spline Function. Numerische Mathematik, vol. 10, pp. 177–183.
  14. Kartashov, E. М., & Lubov, B. Ya. (1974). Analiticheskie мetody resheniya krayevykh zadach uravneniya teploprovodnosti v oblasti s dvizhuschimisya granizami: Obzor. Izv. АN SSSR Energetika i transport, no. 6, pp. 83–111.
  15. Kartashov, E. М. (2001). Analiticheskie мetody v teorii teploprovodnosti tverdykh tel. Moscow, Vysshaya shkola, 553 p.
  16. Tikhonov, А. N., & Samarskii, А. А. (1999). Uravneniya matematicheskoi fiziki. Ucheb. posobie. Moscow, Izd-vо МGU, 799 p.

 

Received 18 October 2017