Principal Modernization Solutions for a 300 MW Power Unit to be Converted to Operate at Ultra-Supercritical Steam Parameters

image_print
DOI https://doi.org/10.15407/pmach2021.04.038
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 24, no. 4, 2021 (December)
Pages 38-49
Cited by J. of Mech. Eng., 2021, vol. 24, no. 4, pp. 38-49

 

Authors

Andrii O. Kostikov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: kostikov@ipmach.kharkov.ua, ORCID: 0000-0001-6076-1942

Oleksandr L. Shubenko, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: shuben@ipmach.kharkov.ua, ORCID: 0000-0001-9014-1357

Viktor H. Subotin, Joint-Stock Company “Ukrainian Energy Machines” (formerly JSC “Turboatom”) (199, Moskovskyi ave., Kharkiv, 61037, Ukraine), e-mail: office@ukrenergymachines.com, ORCID: 0000-0002-2489-5836

Oleksandr V. Senetskyi, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), O. M. Beketov National University of Urban Economy in Kharkiv (17, Marshal Bazhanov str., Kharkiv, 61002, Ukraine), e-mail: Oleksandr.Senetskyi@kname.edu.ua, ORCID: 0000-0001-8146-2562

Viktoriia O. Tarasova, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: vat523710@gmail.com, ORCID: 0000-0003-3252-7619

Volodymyr M. Holoshchapov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: goloshchapov36@gmail.com

Mykola Yu. Babak, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine)

 

Abstract

This paper analyses the state of power engineering in Ukraine and the main trends in the development of the world market in the field of converting high-capacity powerful power units of thermal power plants into ultra-supercritical (USC) ones. It is shown that the energy sector of Ukraine requires special attention and the introduction of new modern technical solutions. Worldwide trends indicate that the emphasis is now on increasing the steam parameters before a turbine to ultra-supercritical ones. This allows one both to increase the efficiency of power units and to reduce thermal emissions, fighting the global environmental problem of climate warming. The implementation of this approach is proposed taking into account the realities of the Ukrainian economy and the available technical capabilities of the power engineering industry. This paper presents the results of variational computational studies of the thermal scheme of the 300 MW power unit of the K-300-23.5 turbine to be converted into a USC one. The problem was solved under the condition of maximizing the preservation of the thermal scheme, increasing the efficiency of the power unit and minimizing capital investments during the modernization of the turbine. It was chosen to preserve the regeneration system, as well as the medium-pressure (MP) and low-pressure (LP) cylinders. Considered and calculated were variants with the addition to the existing turbine of a USC cylinder and the creation of a new high-pressure cylinder (HPC) with insignificant changes in its overall characteristics. The results of computational studies showed that the most rational variant for modernizing the 300 MW turbine plant is the creation of a new HPC designed for operation at USC steam parameters as well as the addition to the IPC of a new cylinder with the purpose of increasing the reheat steam parameters while preserving the regeneration system.

 

Keywords: steam turbine cycle, supercritical steam parameters, thermal scheme, power unit, modeling, efficiency, mathematical model, software package, pressure, temperature, modernization, generation.

 

Full text: Download in PDF

 

References

  1. Khalatov, A. A. & Yushchenko, K. A. (2012). Sovremennoye sostoyaniye i perspektivy ispolzovaniya gazoturbinnykh tekhnologiy v teplovoy i yadernoy energetike, metallurgii i ZhKKh Ukrainy [Current state and prospects of using gas turbine technologies in thermal and nuclear energy, metallurgy and housing and communal services of Ukraine]. Promyshlennaya teplotekhnika – Industrial Heat Engineering, vol. 34, no. 6, pp. 30–45 (in Russian).
  2. Lukowicz, H., Dykas, S., Stepczynska, K., & Rulik, S. (2011). The effect of the internal reheat application on the efficiency of the 900 MW ultra-supercritical coal-fired power unit. Archives of Thermodynamics, vol. 32, iss. 3, pp. 127–144. https://doi.org/10.2478/v10173-011-0018-0.
  3. (2012). Technology roadmap: High-efficiency, low-emissions, coal-fired power generation. Paris: International Energy Agency, 48 p. https://www.iea.org/reports/technology-roadmap-high-efficiency-low-emissions-coal-fired-power-generation. (Accessed 10 November 2020).
  4. Liu, X. J., Kong, X. B., Hou, G. L., & Wang, J. H. (2013). Modeling of a 1000 MW power plant ultra super-critical boiler system using fuzzy-neural network methods. Energy Conversion and Management, vol. 65, pp. 518–527. https://doi.org/10.1016/j.enconman.2012.07.028.
  5. Mohamed, O., Khalil, A., & Wang, J. (2020). Modeling and control of supercritical and ultra-supercritical power plants: A review. Energies, vol. 13, iss. 11, pp. 2935–2958. https://doi.org/10.3390/en13112935.
  6. Rogalev, N. D., Golodnitskiy, A. E., & Tumanovskiy, A. G. (2013). Sostoyaniye razrabotok v oblasti sozdaniya ugolnykh paroturbinnykh elektrostantsiy s parametrami para, prevyshayushchimi 30,5 MPa i 700 °С [The state of development in the field of creating coal-fired steam turbine power plants with steam parameters exceeding 30.5 MPa and 700 °C]. Elektricheskiye stantsii – Electrical stations, no. 3 (980), pp. 12–21 (in Russian).
  7. (2020). JSC “Turboatom”: Official website of the manufacturer. Available at: https://www.turboatom.com.ua/map. (Accessed 10 November 2020).
  8. Shubenko-Shubin, L. A. (1962). Osobennosti konstruktsiy noveyshikh parovykh turbin bolshoy moshchnosti [Design features of the latest high-power steam turbines]. Moscow, Leningrad: Gosenergoizdat, 136 p. (in Russian).
  9. Kondratyev, A. A., Rassokhin, V. A., Oleynikov, S. Yu., Kondratyeva, Ye. A., & Osipov, A. V. (2017). Razvitiye parovykh turbin na sverkhkriticheskiye i supersverkhkriticheskiye parametry para [Development of steam turbines for supercritical and supercritical steam parameters]. Vestnik BGTUBulletin of the Bryansk State Technical University, no. 1 (54), pp. 72–82 (in Russian). https://doi.org/10.12737/24895.
  10. Saito, E., Nishimoto, Sh., Eudo, H., Yamamoto, R., Kawasaki, K., & Sato, J. (2002). Development of 700 ºC class steam turbine technology. Mitsubishi Heavy Industries Technical Review, vol. 54, no. 3, pp. 10–15.
  11. Mikhaylov, V. Ye., Khomenyuk, L. A., Pichugin, I. I., Kovalev, I. A., Bozhko, V. V., Vladimirskiy, O. A., Zaytsev, I. V., Kachuriner, Yu. Ya., Nosovitskiy, I. A., Orlik, V. G. (2007). Kontseptsiya turbin na supersverkhkriticheskiye, sverkhkriticheskiye i dokriticheskiye parametry para [The concept of turbines for ultra-supercritical, supercritical and subcritical steam parameters]. TeploenergetikaHeat power engineering, no. 11, pp. 5–12 (in Russian).
  12. Wang, Ch., Liu, M., Li, B., Liu, Yi., & Yan, J. (2017). Thermodynamic analysis on the transient cycling of coal-fired power plants: Simulation study of a 660 MW supercritical unit. Energy, vol. 122, pp. 505–527. https://doi.org/10.1016/j.energy.2017.01.123.
  13. Lukowicz, H., Dykas, S., Rulik, S., & Stepczynska, K. (2011). Thermodynamic and economic analysis of a 900 MW ultra-supercritical power unit. Archives of Thermodynamics, vol. 32, iss. 3, pp. 231–244. https://doi.org/10.2478/v10173-011-0025-1.
  14. Wang, Y., Cao, L., Hu, P., Li, B., & Li, Y. (2019). Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode. Energy, vol. 179, pp. 908–915. https://doi.org/10.1016/j.energy.2019.05.026.
  15. Li, D. & Wang, J. (2018). Study of supercritical power plant integration with high temperature thermal energy storage for flexible operation. Journal of Energy Storage, vol. 20, pp. 140–152. https://doi.org/10.1016/j.est.2018.09.008.
  16. Yang, Y., Guo, X., & Wang, N. (2010). Power generation from pulverized coal in China. Energy, vol. 35, iss. 11, pp. 4336–4348. https://doi.org/10.1016/j.energy.2009.05.006.
  17. Babenko, I. A. & Shulgin, V. L. (2018). Tekhnologii supersverkhkriticheskikh parametrov para v sovremennoy energetike [Technologies of ultra-supercritical steam parameters in modern power engineering]. Proceedings of the third scientific and technical conference of young scientists of the Ural Power Engineering Institute. Yekaterinburg: UrFU, pp. 69–71 (in Russian).
  18. Lykhvar, N. V., Govorushchenko, Yu. N., & Yakovlev, V. A. (2003). Modelirovaniye teploenergeticheskikh ustanovok s ispolzovaniyem interaktivnoy skhemnoy grafiki [Modeling of heat power plants using interactive circuit graphics]. Problemy mashinostroyeniyaJournal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 6, no. 1, pp. 30–41 (in Russian).
  19. Babenko, O. A. (2011). Gibkiye matematicheskiye modeli dlya sovershenstvovaniya rezhimov otpuska teploty teplofikatsionnymi blokami TETs [Flexible mathematical models for improving the modes of heat supply by CHPP cogeneration units]. Energosberezheniye. Energetika. Energoaudit – Energy Saving. Power Engineering. Energy Audit, no. 10, pp. 36–40 (in Russian).
  20. Rusanov, A., Shubenko, A., Senetskyi, O., Babenko, O., & Rusanov, R. (2019). Heating modes and design optimization of cogeneration steam turbines of powerful units of combined heat and power plant. Energetika, vol. 65, no. 1, pp. 39–50. https://doi.org/10.6001/energetika.v65i1.3974.
  21. Gorpinko, Yu. I., Senetskiy, A. V., Sarapin, V. P., Shubenko, A. L., & Malyarenko, V. A. (2019). Dvukhkonturnyy termodinamicheskiy tsikl s odnonapravlennym teploobmenom mezhdu kholodilnym i energeticheskim tsiklami [Two-circuit thermodynamic cycle with unidirectional heat exchange between refrigeration and power cycles]. Problemy regionalnoy energetikiRegional Energy Problems, no. 3 (44), pp. 51–64 (in Russian).

 

Received 29 October 2021

Published 30 December 2021